
Quinsam Coal Corporation - Quarterly Report (April-June 2024)

For Effluent Permit PE: 7008

Environmental Department

Introduction	4
2.0 Project Location	5
3.0 Quarterly Report Summary	1
3.1 Permit Limit Exceedance	2
3.2 Compliance with Permit	2
4.0 Water Management Systems	3
4.1 NORTH Water Management Systems (NWMS)	
4.1.1 Authorized Discharge Location – Settling Pond 4 (WD / SP4) EMS #E207409	10
4.2. South End Water Management System:	11
4.2.1 Authorized Discharge Location - Settling Pond 1 (SPD / SP1)- EMS # E218582	15
4.3 7-South Water Management	17
4.3.1 Authorized Discharge Location - 7SSD - EMS # E292069	17
5.0 Receiving Environment Water Quantities & Flow Rates	21
5.1 Receiving Environment (Streams and Lakes) Monitoring Sites	25
5.1.1 Water Hardness	
5.1.2 Total Aluminum	26
5.1.3 Dissolved Copper	28
5.2 Lakes	31
5.3 Streams and Rivers	41
5.3.1 Non-Receiving Environment Sites (LLE and Seeps)	44
5.4. Conclusion	
5.5 Biota Monitoring in the Receiving Environment	45
5.5.1 Chlorophyll "A and Phytoplankton Abundance	
5.5.2 Species Composition	47
5.6 Zooplankton	
5.6.1 Results	48
5.7 Conclusion	
6.0 In-situ Mine Water and Ex-situ Groundwater	53
7.0 Passive Treatment System (PTS)	
8.0 Quality Assurance Quality Control	58
9.0 Conclusion	58
List of Figues within Report	
Figure 1: Regional Location Map	5
Figure 2: Quinsam Watershed	
Figure 3: Quinsam Mine Layout	
Figure 4: North Water Management System (NWMS)	
Figure 5: 5M2N Flooded Mine Water Level	
Figure 6: 1M2N Flooded Mine Water Level	
Figure 7: 2-North Volume of Discharge Breakdown from April 1, 2024 to June 30, 2024	
Figure 8: Settling Pond #4, Cumulative and Daily Discharge Rates	
Figure 9: South Water Management System (SWMS)	
Figure 10: 2-South Mine Void Pumping Rates and Water Levels (INF)	
Figure 11: 2-South Inflow - Flow versus Precipitation	

Figure 12: 2-South Outflow into 3-South Pit – Flow versus Precipitation	14
Figure 13: 2 / 3 South - Flow Rates (m ³ /s)	
Figure 14: Settling Pond #1, Cumulative and Daily Discharge Rates	
Figure 15: LLE - Discharge versus Precipitation	
Figure 16: Stream 1, (7S) - Flow versus Staff Gauge	
Figure 17: 7-South Area 5 Totalizer Values	
Figure 18: 7-South Mine Water Pumped into 5-South Mine - Totalized Values	20
Figure 19: 5-South Flooded Mine Water Level	21
Figure 20: Daily Precipitation	
Figure 21: Quinsam River at Argonaut Bridge (WA)	
Figure 22: Middle Quinsam Outlet (WB)	
Figure 23: Long Lake Outlet (LLO)	
Figure 24: Iron River (IR8)	
Figure 25: Receiving Environment Sites – Al-T versus Chronic WQG's	
Figure 26: Non-Receiving Environment Sites – Al-T versus Chronic WQG's	
Figure 27: Receiving Environment Site – Cu-D versus Acute WQG's	
Figure 28: Non-Receiving Environment Site – Cu-D versus Acute WQG's	
Figure 29: Receiving Environment Sites – Cu-D versus Chronic WQG's	
Figure 30: Receiving Environment Sites – Averaged Cu-D versus Chronic WQG's	
Figure 31: No Name and Long Lake's - Temperature versus Depth	
Figure 32: Middle and Lower Quinsam Lake's - Temperature versus Depth	
Figure 33: No Name and Long Lake's – pH versus Depth	
Figure 34: Middle and Lower Quinsam Lake's - pH versus Depth	
Figure 35: No Name and Long Lake's – Conductivity versus Depth	
Figure 36: Middle and Lower Quinsam Lake's - Conductivity versus Depth	
Figure 37: Average Dissolved Sulphate – No Name and Long Lakes	
Figure 38: Average Dissolved Sulphate – Middle and Lower Quinsam Lakes	
Figure 39: Average Total Arsenic - Quinsam River	
Figure 40: Dissolved Iron - Quinsam River	
Figure 41: Average Dissolved Sulphate - Quinsam River	
Figure 42: Spring Chlorophyll "a"	
Figure 43: Spring Phytoplankton Abundance	
Figure 44: Spring Zooplankton – Species Composition	
Figure 45: No Name and Long Lakes - Zooplankton Species Composition – Spring	
Figure 46: Middle and Lower Quinsam Lakes - Zooplankton Species Composition – Spring	
Figure 47: Shallow Groundwater (RBP) and Seeps – Arsenic, Chloride and Sulphate	
Figure 48: Cross Section in North-South Direction Near Seepage Areas by QU11-09 and QU11-05	
Figure 49: Water Level Versus Long Lake Seep Flow	
Figure 50: Average Sulphate and Average Sulphate Reduction	
	57
List of Tables within Report: Table 1: North Water Management Pumping System	4
Table 2: Pumping On / Off Sequences and Discharge Direction	
Table 3: Receiving Water (Streams and Lakes) Monitoring Sites	
Table 4: Table 1 Phytoplankton Abundance (cells/mL) in the Quinsam Lake System, 2024	
Table 5: Zooplankton Abundance (organisms / sample)	
THOSE OF ECOPIMINATING TOURISMINE (OF SMILDING) BUILDING TOURISMINE THE PROPERTY OF THE PROPER	+0

Appendix I – Tables

Tables 1-46

Appendix II

Phytoplankton Results - Quinsam Lakes

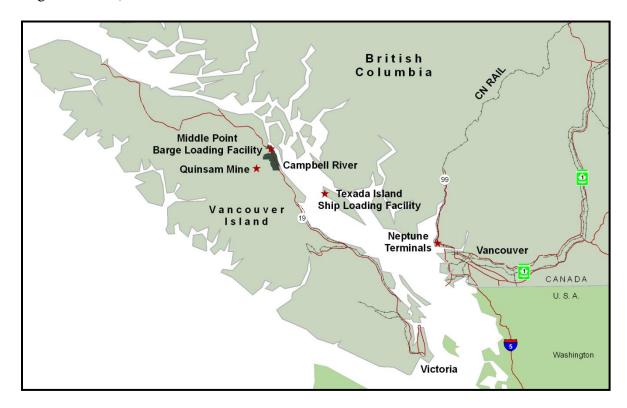
Freshwater Zooplankton Enumeration and Identification Methods Report

Quinsam Coal Corporation for taxonomic analyses

Introduction

Quinsam Coal Corporation (QCC) operates water management systems under permits C-172 and PE:7008 to mitigate mining impacts on the Middle Quinsam Sub-Basin and Iron River watersheds. Permit PE:7008 specifies monitoring programs and allowable levels for water quality parameters, covering surface and groundwater monitoring within and outside the mine footprint.

The Quinsam Coal Mine, located 25 km southwest of Campbell River, B.C., is an underground mine with access via Highway 28 and FSR 9563. The mine produced High Volatile "A" Bituminous Coal, processed on-site and shipped from the Middle Point Barge Terminal.


Run-of-mine coal was processed at an on-site plant, generating coarse coal reject (CCR) and fine coal refuse (tailings). These wastes are classified as potentially acid generating (PAG) or non-PAG. Non-PAG tailings are stored in the Tailings Storage Facility (TSF), while non-PAG CCR is used for TSF construction or stored in the 2-North Open Pit. PAG-CCR material was historically disposed of sub-aqueously in surface and underground locations.

Authorized discharge locations under PE-7008 include Settling Pond #1 (SP1) to Long Lake, Settling Pond #4 (SP4) to Middle Quinsam Lake, and 7-South Surface Discharge (7SSD) to the Quinsam River, which is currently inactive.

Water management covers areas 2/3 South, 5-South, 7-South, and 2/3 North. Mine contact water from 7-South is pumped into the 5-South flooded mine void. Since January 2022, 5-South mine water has not been pumped into the 2-North mine. In the 2/3-South areas, contact water is pumped to and discharged at SP1. The Long Lake Seeps and three potential seepage pathways near the Quinsam River are under investigation for unauthorized discharges.

2.0 PROJECT LOCATION

The Quinsam Coal Mine, referred to as "the Site," is an underground coal mine located in the east-central area of Vancouver Island, 20 kilometers west of the City of Campbell River and about 200 kilometers northwest of Vancouver. Access to the mine from Campbell River is via BC Provincial Highway 28 (the Gold River Highway) and Ministry of Forests – Forest Service Road 9563 (the Argonaut Main).

Figure 1: Regional Location Map

The Quinsam River watershed drains an area of approximately 280 km², separate from the Campbell River watershed by a topographical divide. The site is situated within the Quinsam Subbasin, with mine effluent discharge entering from the south into Long Lake and from the north into Middle Quinsam Lake. Both lakes drain into the Quinsam River. The site is located along the northeastern foothills of the Beaufort Range, characterized by gently rolling lands incised by stream and river channels, the most prominent being the Quinsam River. The Quinsam River flows northward from Middle Quinsam Lake before making an abrupt eastward bend and continuing towards Lower Quinsam Lake.

The water bodies in the subbasin include Upper Quinsam, Middle Quinsam, Lower Quinsam, No Name, Long, and Flume Lakes. Upper Quinsam Lake drains into Wokas Lake, forming the headwaters of the Quinsam River. The Quinsam River flows approximately 5 km past the Argonaut Bridge into the inlet of Middle Quinsam Lake. Long Lake enters the Quinsam River

from the south near the outlet of Middle Quinsam Lake. The Quinsam River flows east roughly 10 km before entering Lower Quinsam Lake and then north 25 km before joining the Campbell River, 3 km from the estuary.

The Iron River, a major tributary to the Quinsam River, enters from the south approximately 5 km downstream of Middle Quinsam Lake and about 2.5 km from the inlet of Lower Quinsam Lake. The outflow from Flume Lake drains a small basin and flows into the Quinsam River near the west end of Middle Quinsam Lake. Long Lake drains a small subbasin downstream of No Name Lake and enters the Quinsam River from the south near the outlet of Middle Quinsam Lake.

There are two dams located in the upper watershed on the Quinsam River between Wokas Lake and Middle Quinsam Lake. Flows have been regulated by BC Hydro since 1957. These dams divert water through a designed channel into either the Quinsam River entering Middle Quinsam Lake or Gooseneck Lake draining into the Campbell River towards the John Hart Dam Hydro Electricity Generating Station. Refer to Figure 2 and Figure 3, below.

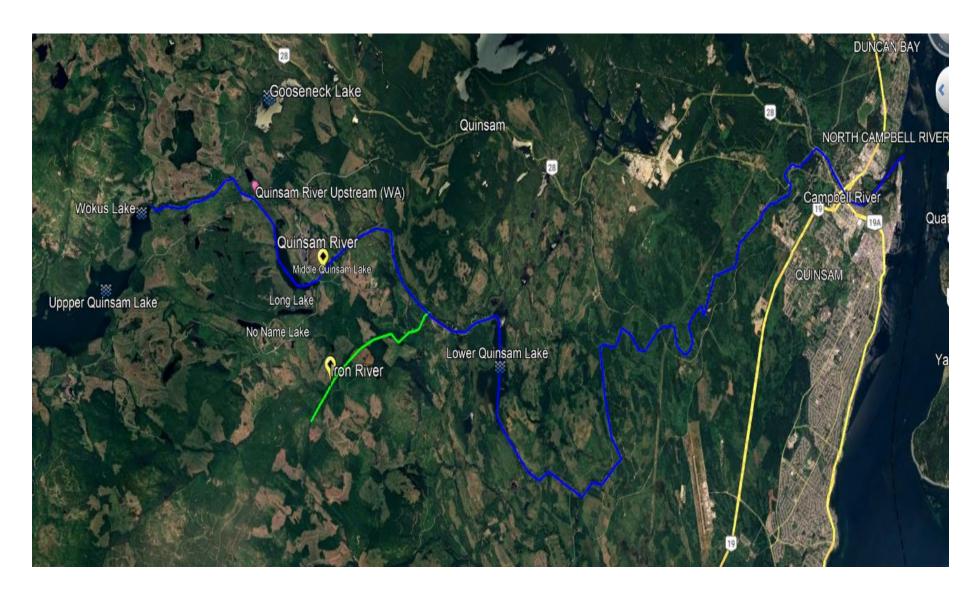


Figure 2: Quinsam Watershed

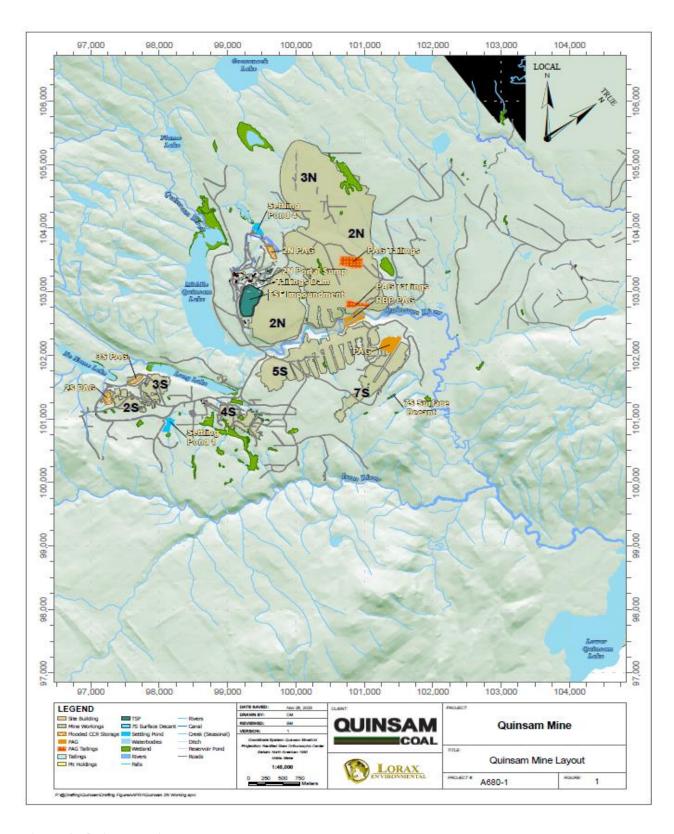


Figure 3: Quinsam Mine Layout

3.0 QUARTERLY REPORT SUMMARY

The mine continues to be operated in a "care and maintenance" mode with MNP, formerly The Bowra Group Inc. as the Receiver.

The 2023-2024 Annual Water Quality Monitoring Report was submitted on June 28th. This report and others can be viewed here: http://www.quinsamcoalenvironmentalreports.com/

Authorized discharge locations include Settling Pond #1 (SP1) on the south side, Settling Pond #4 (SP4) on the north side, and 7-South Surface Decant (7SSD) for the 7-South Mine. Discharge occurred from SP1 and SP4 during Q1, with no discharge from 7SSD. Discharge characteristics (water quality and quantity) are compared to permit limits.

Non-compliance with PE:7008 occurred at SP1 and SP4 due to continuous flow monitoring and equipment malfunctions.

Effluent discharged without processing through authorized works is considered a bypass (S, S2A, S2B, LLSM, and LLS).

The receiving environment monitoring program for lakes (No Name, Long, Middle, and Lower Quinsam Lakes) and river/stream stations (Iron and Quinsam Rivers, No Name and Long Lake outlet channels) was completed this spring. This program followed the 5 samples in 30 days schedule, with sampling events from March 28th to May 8th during the "spring freshet" period.

Water quality in the receiving environment is compared to British Columbia Water Quality Guidelines for Freshwater Aquatic Life (BC WQG-FWAL), both acute and chronic. Chronic WQGs are averaged over five weeks, with individual results compared to both chronic and acute WQGs.

Dissolved copper was slightly elevated above BC WQG-FWAL throughout the receiving environment, both upstream and downstream of mine influence. Total aluminum was elevated above chronic WQGs in No Name Lake at 4 meters, 9 meters, and 1 meter from the bottom.

At the wetland location in the South mine area at Long Lake Entrance (LLE), average weekly concentrations of sulphate were elevated above the chronic WQG of 128 mg/L.

Locations S and S2 (A and B) had total arsenic concentrations above the chronic WQG of 0.005 mg/L. Total boron was above the chronic WQG of 1.2 mg/L at site S. Dissolved sulphate was elevated at both LLS and LLSM, with total iron elevated at LLS during one sampling event this quarter. Refer to Appendix I, Table 3 for further details.

During Q1, both in-situ (mine water) and ex-situ (groundwater) sites were compared to Contaminated Site Regulation for Aquatic Life (CSR-AW) (BC reg.37/96. O.C. 1480/96).

Parameters of interest (dissolved arsenic, dissolved cadmium, chloride, selenium, sulphate, and sulfide calculated as hydrogen sulfide) had concentrations trending above CSR-AW.

Routine inspections were conducted, and any required maintenance of the water management structures was completed.

3.1 PERMIT LIMIT EXCEEDANCE

There were no parameters above permit limits this quarter.

3.2 COMPLIANCE WITH PERMIT

This section summarizes permit non-compliance (PNC) issues related to missed samples, continuous flow requirements, and unauthorized discharges. Details are in Appendix I, Table 2.

Non-Compliance Issues:

- > **SP1**: 7 days of unrecorded flow due to terminal strip malfunction.
- > SP4: 13 days of unrecorded flow due to an SD card error, which was later fixed.

Bypasses:

Effluent bypasses of authorized works occurred at locations S, S2A, S2B, LLSM, and LLS.

- LLS: Flowed for 1 week in April, averaging 250 mL/min.
- LLSM: Flowed for 12 days in April due to dewatering efforts and low winter precipitation.
- ➤ Natural Flow Paths:

Discovered in 2021 at locations S, S2 (A and B), and SUS.

- > S2US: Flowed for 3 days with seepage at lower elevations.
- > S2B: Flowed for 2 weeks (April 1-15).
- ➤ S and S2A: Continued to flow throughout the quarter.

Underground Water Levels:

- ➤ 2-North mine water levels are below the river and potential seepage locations.
- > S2A flow path appears to be influenced by perched water tables rather than mine water seepage. Further investigation is ongoing.

To address the equipment malfunctions at SP1 and SP4, the following actions are being taken:

SP1: The terminal strip malfunction has been identified and repaired to ensure accurate flow data recording.

SP4: The SD card error was resolved by reformatting the card and restoring proper data logging functionality.

Additionally, regular inspections and maintenance are being conducted to prevent future malfunctions and ensure continuous compliance with permit requirements.

4.0 WATER MANAGEMENT SYSTEMS

4.1 NORTH WATER MANAGEMENT SYSTEMS (NWMS)

There is currently limited access to the 2-North underground workings and no access to the 5-South underground workings. Water levels in underground workings are influenced by surface and groundwater infiltration and have a seasonal trend of increased water levels in the wet season and lower water levels in the dry season. The North water management system (NWMS) consists of underground 2-North mine water pumped to surface and directed into either Brinco Brook or the 2-North pit pond, (WP) with release through the authorized discharge location, Settling Pond 4 (SP4).

Dewatering pumps are positioned underground and from the surface to control water levels. If pumping was eliminated the mine would fill, reducing the range between fluctuating water levels through the seasons. Water levels would become more stable throughout the year reaching a steady state flooded condition. The seasonal range of fluctuating water levels and the water elevation of a completely flooded mine is currently unknown due to dewatering efforts.

Refer to Table 1 below, describing the underground and surface pump systems. The Quinsam Mine employs a comprehensive water management system to handle mine-related runoff and underground water.

North Water Management System (NWMS):

- Collects runoff from disturbed surface areas in the north.
- Also receives pumped water from the 2-North underground my operations.
- Components include catchment sumps, ditches, pipelines, and Settling Pond #4.
- Settling Pond #4 water was pumped to the Coal Processing Plant (CPP)
- Coal process water was pumped to the Tailings Dam.

2-North Mine Dewatering Components:

The 2-North Mine utilizes a network of pump systems. These include the following and with additional information provided in Table 1:

- 1 Mains 2-North (1M2N)
- 5 Mains 2-North (5M2N)
- 3 Mains 2-North (3M2N)
- 2-North Portal Sump (2NPS)
- South Dyke Sump (SDS)

Table 1: North Water Management Pumping System

Area	Type of Pump – Horsepower (Hp)	Total Pumping Capacity, Gallons per minute (GPM)	Discharge location
1M2N	1 x 125 Hp	750	Brinco Brook or WP
5M2N	1 x 125 Hp	750	Brinco Brook
3M2N	2 x 250 Hp	Over 4500	Brinco Brook or WP
2NPS	1 x 58 Hp (1 on standby)	800	Brinco Brook
SDS	1 x 58 Hp	800	Underground 3-Mains
Settling Pond #4 to CPP	1 x 125 Hp	2250	
CPP to Tailings Dam	1 x 125 Hp	2250	
Contingency			
3M2N	1 x 58 Hp feeding 1 x 250 Hp	2250	Brinco Brook or WP

Purpose for the pumps Underground:

- Maintain water levels underground,
- Protect underground electrical equipment,
- Mitigate potential seepage from subsidence features.

Contingency Pumps:

- Additional pumps (1 x 250 Hp) are on standby in 3M2N.
- Dewater specific mine areas once water levels rise to the elevation of the pumps.

South Dyke Sump (SDS) and Redirected Water:

- SDS collects seepage water from the south side of the tailings dam.
- When the 5-South dewatering pump was operating, combined 5-South and 7-South mine water was redirected into boreholes above 3M2N.

2-North Portal Sump, (2NPS) EMS #E283433:

Collects seepage water from the following:

- Tailings Storage Facility (TSF),
- 2-North Pit Sump,
- South Dam
- Underground 1Mains roadways,
- Combine water is pumped via 58 Hp into Brinco Brook or 2-North Pit Sump.

2-North Pit Sump, (WP) EMS #E207412:

- Subaqueous PAG-CCR facility.
- Contains waste rock from 5-South mine coal processing.
- Stored with at least 1.50 m of water cover to prevent acid generation.
- Permanent water cover sourced from 1M2N, 3M2N, or 2NPS.

Settling Pond #4 (SP4/WD) EMS #E207409:

- Authorized discharge location for NWMS, permit limits (PE:7008).
- Collects gravity-fed water from Brinco Brook
- Acts as the final collection point before discharge into a meadow/biomass system.
- Approximately 2.4 ha of marshland with a storage capacity of 30,000 m³

Culvert, at Middle Quinsam Lake Road (WC) EMS #E207411:

- Downstream location from SP4, discharge water from SP4 and meadow/biomass system.
- Last monitoring point before entering Middle Quinsam Lake near the inlet.

Figure 4, provides a flow chart describing the flow paths for NWMS. Figures 5 and 6 display the seasonal trends influenced by surface water inflows and pumping rates in the 2-North mine void. Peaks are observed in January at an elevation of 245 meters above sea level (m ASL). Figure 7 displays underground water levels in 2-North mine compared to discharge at SP4.

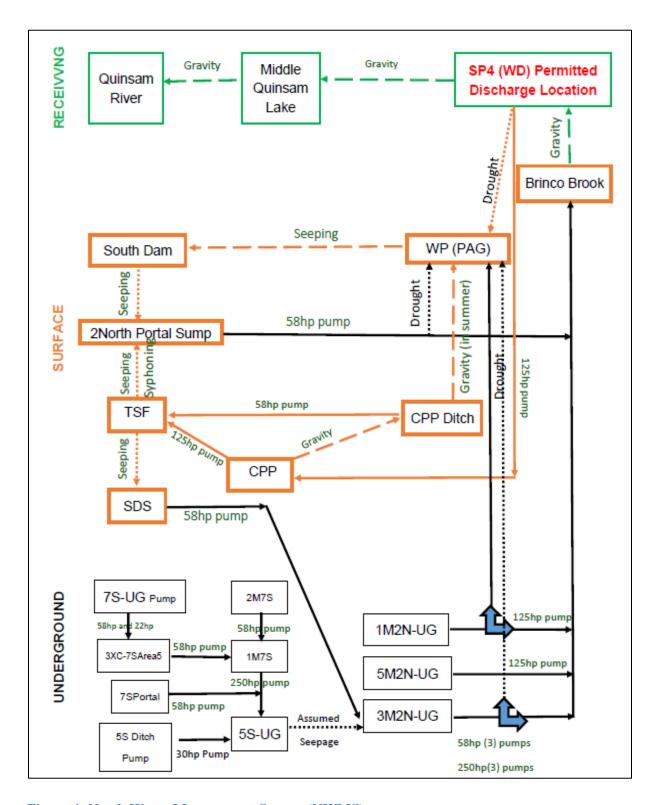


Figure 4: North Water Management System (NWMS)

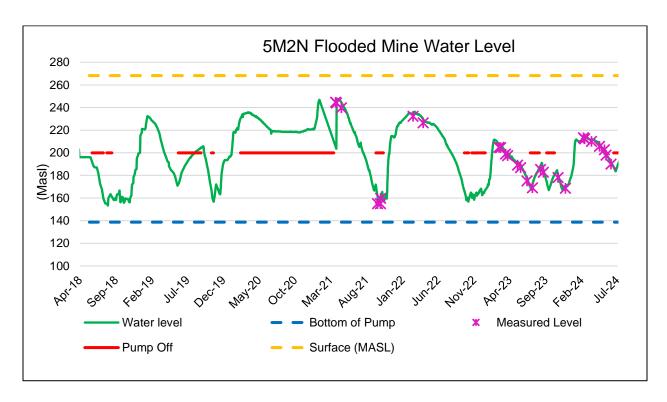


Figure 5: 5M2N Flooded Mine Water Level

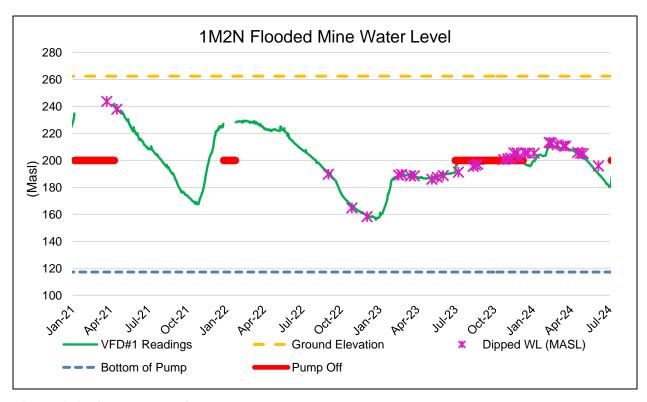


Figure 6: 1M2N Flooded Mine Water Level

Discharge pipelines at 1M2N and 3M2N are equipped with gate valves where water can be directed into the WP. Water is used to supply sufficient water cover over the Potentially Acid Generating (PAG), Course Coal Refuse (CCR) in WP, refer to Table 2, below describes the pumping on / off sequence and direction of water for Q1 to August 18th, 2024.

Table 2: Pumping On / Off Sequences and Discharge Direction

Date	Pump	Pump Power On / Off	Discharged to:
28-Mar to 23-May	7SA5	Off	1M7S
10-Apr	1M2N	On	WP
19-Apr	1M2N	On	Brinco
17-May	1M2N	On	WP
25-May	1M2N	On	Brinco
21-Jun	1M2N	On	WP
15-Apr to 18-Apr	7SPS	Off	Retained
22-Apr to 30-Apr	7SPS	Off	Retained
1-May to August 18	7SPS	On	5-South Mine Void
24-Jun to 18-Aug	7SA5	Off	Retained
8-Feb	1M2N and 5M2N	Off	
1-Jul	5M2N	Off	
5-Jul	1M2N	Off	
13-Aug	1M2N and 5M2N	On	Brinco

All pipelines that discharge water from 2-North Mine into Setting Pond #4 are now equipped with Seametrics flow meters to calculate flow volumes for the water balance model. This information provides a totalized amount of water entering and pumped from the mine workings.

Figure 7, below, displays the volume of discharge breakdown and percentage from each area since June 2023. As displayed, 40% of discharge water exits the site at SP4 indicating that approximately 20% can be allocated to 1M2N discharged into WP to maintain a water cover and evaporation for this Quarter (April 1, 2024 to June 30, 2024).

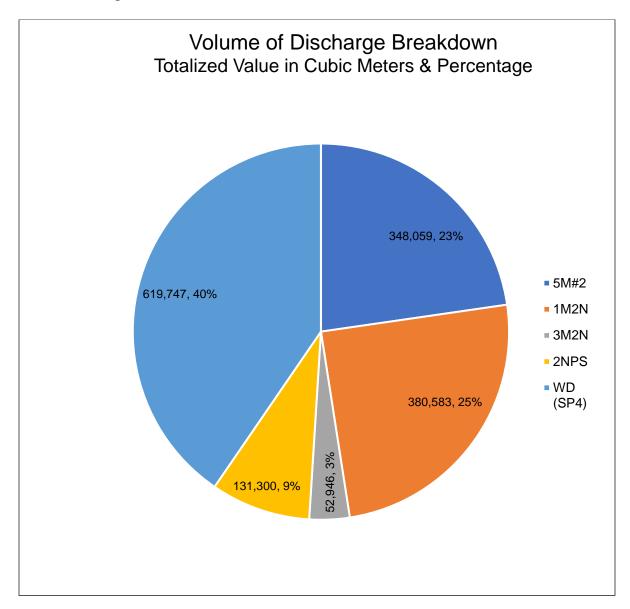


Figure 7: 2-North Volume of Discharge Breakdown from April 1, 2024 to June 30, 2024

4.1.1 AUTHORIZED DISCHARGE LOCATION – SETTLING POND 4 (WD / SP4) EMS #E207409

Settling Pond 4 (WD / SP4) is the authorized discharge location for the NWMS, where permit limits are applied to water quality and quantity. Discharge occurred 91 out of 91 days, refer to Figure 8: Settling Pond #4, Cumulative and Daily Discharge Rates. The meter stopped recording

data for 13 days (May 17^{th} until May 29^{th} , 2024) resulting in missing flow and a permit non-compliance. Cumulative discharge at SP4 was calculated as 629,078 m³ compared to 2023, Q1 where 889, 564 m³ was discharged.

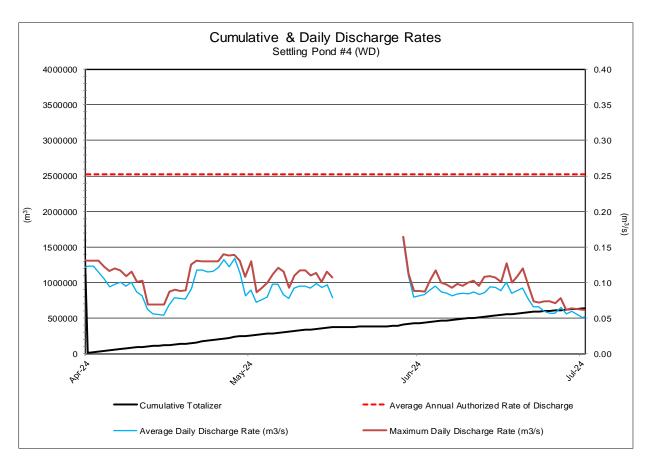


Figure 8: Settling Pond #4, Cumulative and Daily Discharge Rates

4.2. SOUTH END WATER MANAGEMENT SYSTEM:

The South Water Management System (SWMS) is managed by directing all water from the Passive Treatment System (PTS) into the 2-South and 3-South pits to maintain a water cover over the PAG-CCR (1.00 m) and maintain the water within the authorized works. Refer to Figure 9: South Water Management System (SWMS).

Flow data is presented tabularly in Appendix I, Tables 29 and 30 for the following sites:

- EMS ID E292127 2 South Pit Inflow and outflow, and
- EMS ID E292130 Long Lake Seeps (LLS and LLSM)

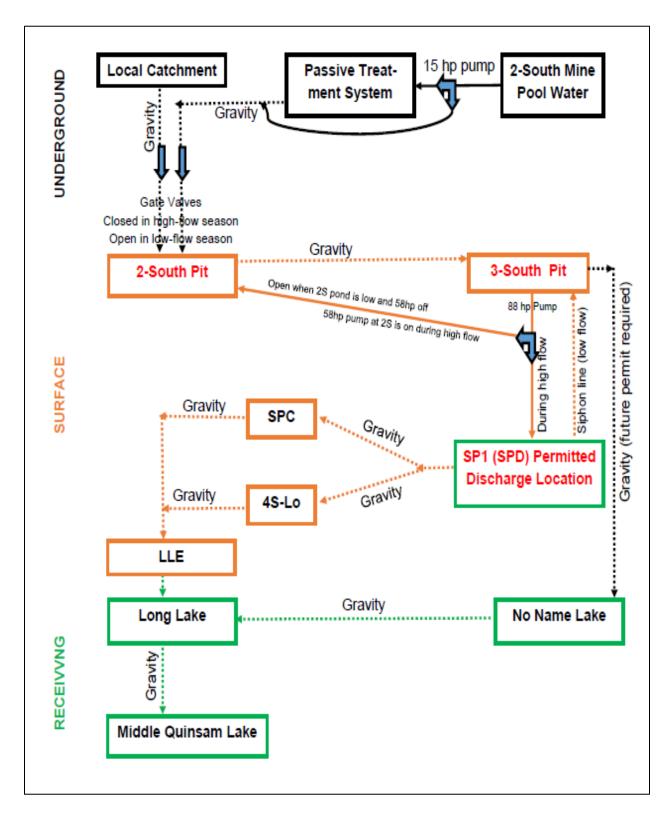


Figure 9: South Water Management System (SWMS)

The 2-South underground pump discharges 2-South mine water into the PTS and the 2-South pit. In Q1, water was pumped at an average of 7.8 L/s from the 2-South mine pool (INF) with approximately 4.0 L/s into the PTS and 3.8 L/s (untreated) into the 2-South pit. Refer to Figure 10: 2-South Mine Void Pumping Rates and Water Levels (INF).

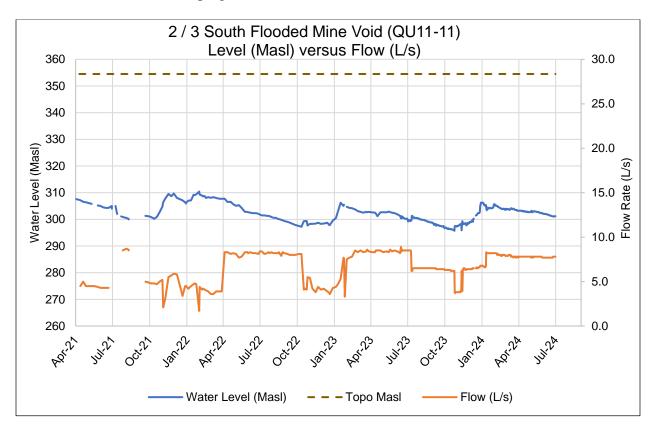


Figure 10: 2-South Mine Void Pumping Rates and Water Levels (INF)

The PTS includes two cells, the Biochemical reactor (BCREFF) and the Sulphide Polishing Cell (SPCEFF). Water flows passively through each cell (BCREFF into SPCEFF) with sulphate and iron reduction. This water is then gravity fed to the 2-South pit, entering at 2-South Inflow (2SI). At this location there is a V-notch weir coupled with a pressure transducer and a staff gauge (hydrometric station), where continuous inflow is monitored. Refer to Figure 11: 2-South Inflow - Flow versus Precipitation.

The 3-South pit maintains a water cover over the PAG-CCR via 2-South pit (seepage under the liner and overflow from the water cover) and precipitation. Water from 2-South pit flows down a channel from 2-South pit to 3-South pit. Continuous discharge is measured at location 2-South Culvert (2SC) into 3-South pit. Here there is an H-flume and a flow meter measuring continuous outflow from the 2-South pit and inflow to 3-South pit. Refer to Figure 12: 2-South Outflow into 3-South Pit – Flow versus Precipitation.

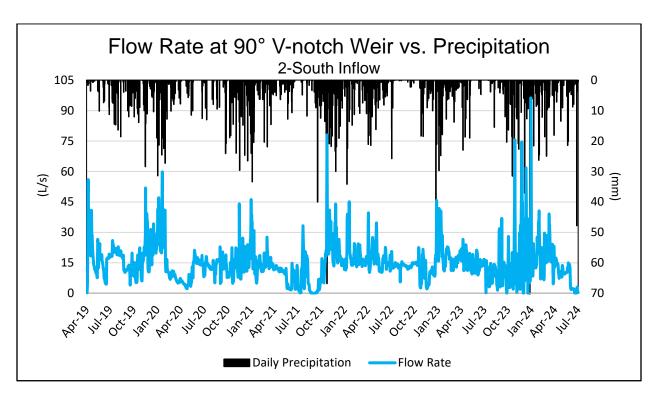


Figure 11: 2-South Inflow - Flow versus Precipitation

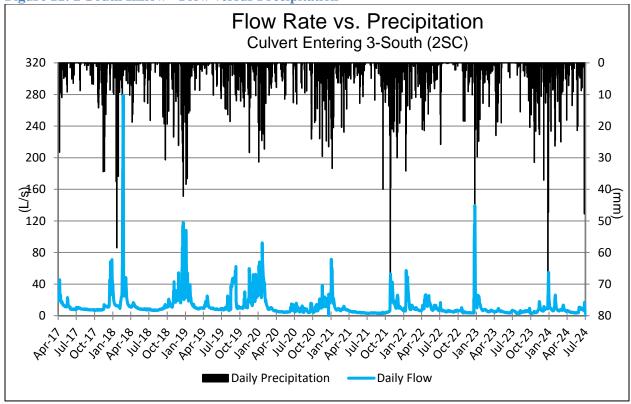


Figure 12: 2-South Outflow into 3-South Pit – Flow versus Precipitation

Water pumped from the 2-South and 3-South pits is pumped to Settling Pond #1 during spring, fall and winter. The pipeline is equipped with a flow meter to quantify pumping rates to Settling Pond #1. During summer if required, a gate valve can be opened at a junction on the 3-South pipeline located on the 2-South highwall. From here the 3-South water can be directed either into the 2-South Pit or to Settling Pond #1 (SPD / SP1). When water pumped from 3-South Pit is directed into 2-South pit, a closed loop circuit is maintained. As a result, SPD will stop discharging, reducing the load from mine contact water on the receiving environment. The valve directing water from 3-South to 2-South was not opened this quarter and all water has been directed to SP1. Refer to Figure 13: 2 / 3 South - Flow Rates (m3/s) displaying pumping rates from the 2 / 3 South pits into SP1 since June 2023.

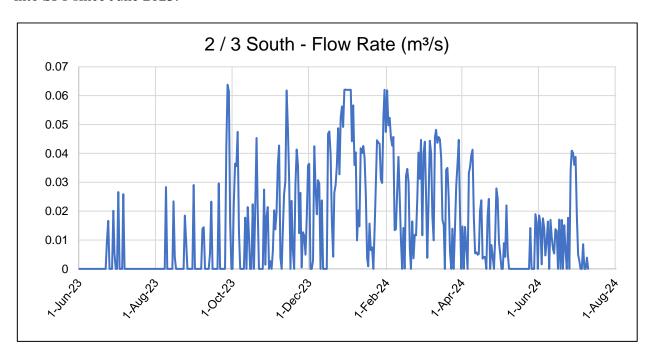


Figure 13: 2 / 3 South - Flow Rates (m³/s)

4.2.1 AUTHORIZED DISCHARGE LOCATION - SETTLING POND 1 (SPD / SP1)- EMS # E218582

SP1 is the authorized discharge location for the SWMS where permit limits are applied to water quality and quantity. Discharge occurred for 91 out of 91 days. The flow meter failed to record data (7-days) or was inaccurate (11-days). This resulted in a permit non-compliance. Figure 14: Settling Pond #1, Cumulative and Daily Discharge Rates. As a result, a cumulative quarterly total of 226,020 m³ was recorded compared to last year, Q1 where 145,782 m³ was discharged.

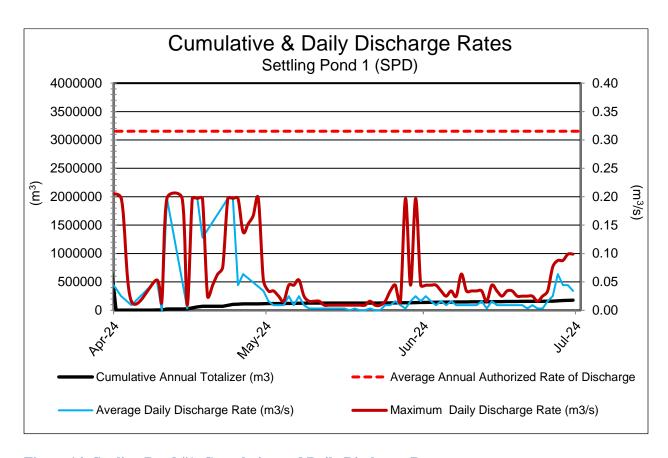


Figure 14: Settling Pond #1, Cumulative and Daily Discharge Rates

The South end mine water entering Long Lake Near the outlet (discharges from SP1) referred to as the Long Lake Entrance (LLE) is equipped with a flow meter measuring continuous discharge with water quality also characterized. Refer to Figure 15: LLE - Discharge versus Precipitation.

The water quality and quantity results corresponding to this location are available in Appendix I, Tables 20 and 30.

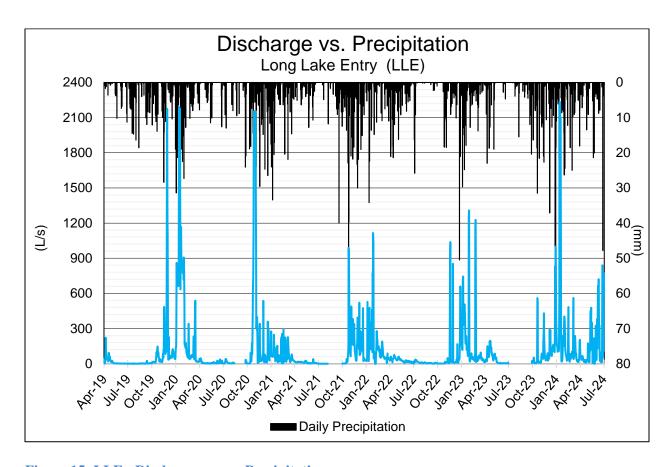


Figure 15: LLE - Discharge versus Precipitation

4.3 7-SOUTH WATER MANAGEMENT

4.3.1 AUTHORIZED DISCHARGE LOCATION - 7SSD - EMS # E292069

Discharge did not occur during Q1 at 7SSD. Sedimentation pond outflow is controlled by pumping water accumulated in the pre-settling pond to the 7-South Portal Sump. This procedure reduces discharge, decreasing the overall parameter loading and the potential for adverse aquatic impact in the receiving environment as the biological availability for parameters of concern is much lower than under constant discharge conditions. Refer to Appendix 1, Tables 28 and 30 for 7SSD and 7S discharge rates, respectively and Figure 16: Stream 1, (7S) - Flow versus Staff Gauge, below.

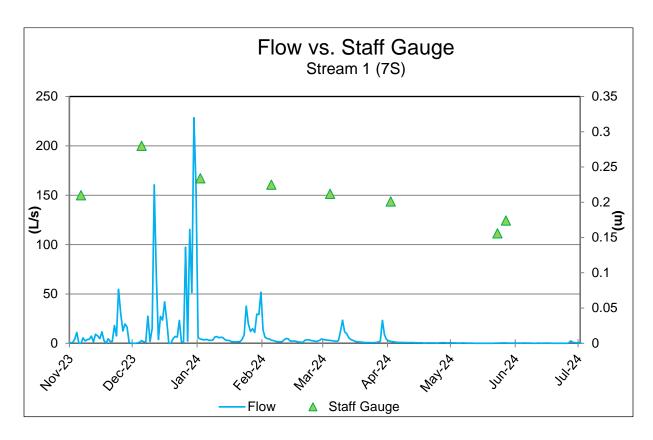


Figure 16: Stream 1, (7S) - Flow versus Staff Gauge

A quarterly sample was obtained from the ponded water (7SSD) and monthly samples collected from Stream 1, 7S. This quarter, parameters of interest remained within the specified limits of the Water Quality Guidelines (WQG) during all sampling events at 7S. The water quality results corresponding to these samples are available in Appendix I, Tables 23 and 25.

Stage pumping / dewatering efforts from 7-South mine underground sumps consist of 7-South Area 5 (7SA5) pumped into 1 Mains 7-South (1M7S) that combines with water in 7-South Portal (7SPS). Combined water is transported into the 5-South mine workings.

The 7SA5 pump was on standby for 60 days out of 91 days and 1M7S pump was on standby for 13 out of 91 days. The pipelines transporting water from these areas are equipped with totalizers that record water in cubic meters (m³). For Q1, a total of 4,927 m³ was pumped from 7SA5 into the 1M7S sump with 21,245 m³ pumped into the 5-South underground mine. Refer to Figure 17 and Figure 18 for totalized values from these areas.

Historically, the 5-South mine water (5SMW), was pumped into 2-North underground mine until the pump failed in January 2022 and was not replaced. The 5SMW levels are monitored (Figure 19: 5-South Flooded Mine Water Level) to ensure water remains below the 5-South portal, 290 meters above sea level (m ASL).

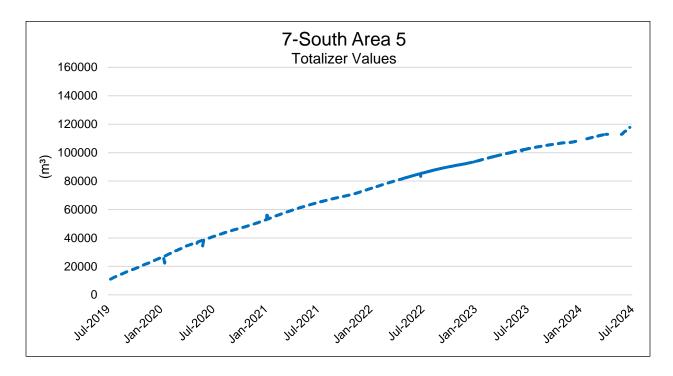


Figure 17: 7-South Area 5 Totalizer Values

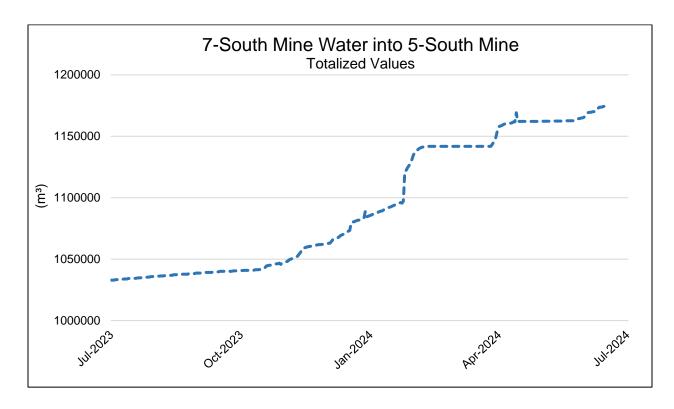
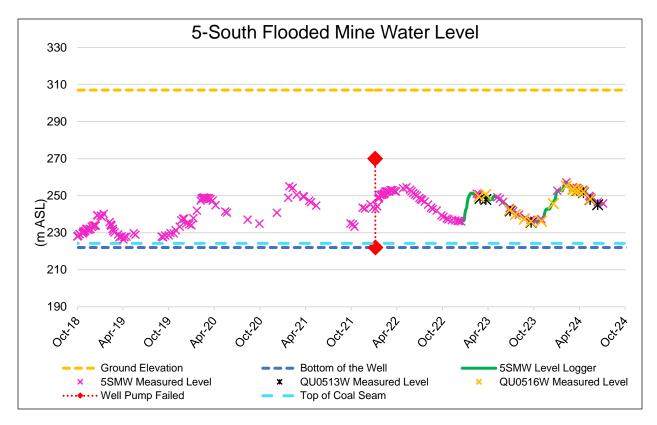



Figure 18: 7-South Mine Water Pumped into 5-South Mine - Totalized Values

Figure 19: 5-South Flooded Mine Water Level

5.0 RECEIVING ENVIRONMENT WATER QUANTITIES & FLOW RATES

Flow data is presented tabularly in Appendix I, Table 30 for the following sites:

- EMS ID 126402 Quinsam River at Argonaut Bridge (WA), (upstream of Mine influence)
- EMS ID 900504 Middle Quinsam Lake Outlet (WB),
- EMS ID E219412 Long Lake Outlet (LLO),
- EMS ID E297232 Iron River Site 8 (IR8)

Flow data for WA has been obtained from the Environment Canada weather monitoring station.

The Quinsam environmental department is establishing and verifying flow curves for all sites required under the effluent permit. Flow rates are seasonal with peaks correlating with heavy rains. The below hydrographs display the flow conditions for the site up to July 2024.

Monthly (April 1st through June 30th) precipitation accumulations of 40.7 mm, 74.8 and 92.2 mm were received at the site, respectively. With the greatest accumulation observed in the month of June (92.20 mm). June experienced the most isolated events of heavy rain (i.e., on June 26th the site experienced 47.8 mm of precipitation). Total accumulated precipitation was 207.7 mm during Q1. Precipitation data for the site is included in Appendix I, Table 31 and Figure 20, below.

Refer to Figure 21 through Figure 24, below for site Hydrograph's.

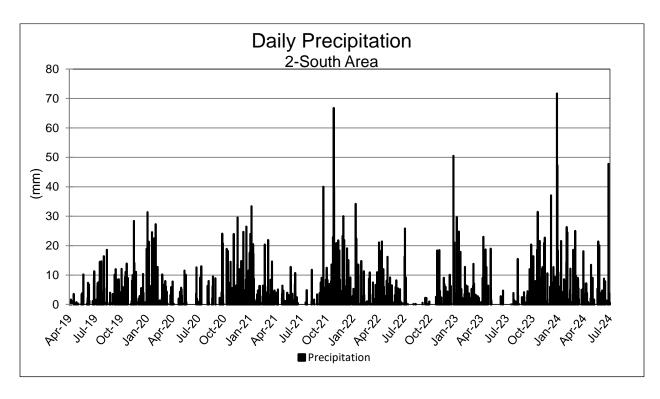


Figure 20: Daily Precipitation

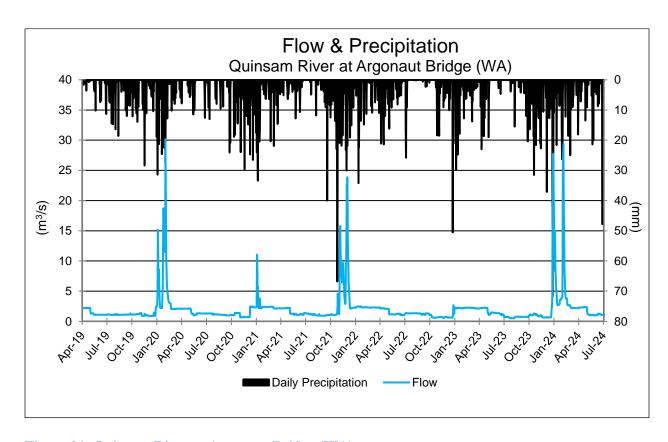


Figure 21: Quinsam River at Argonaut Bridge (WA)

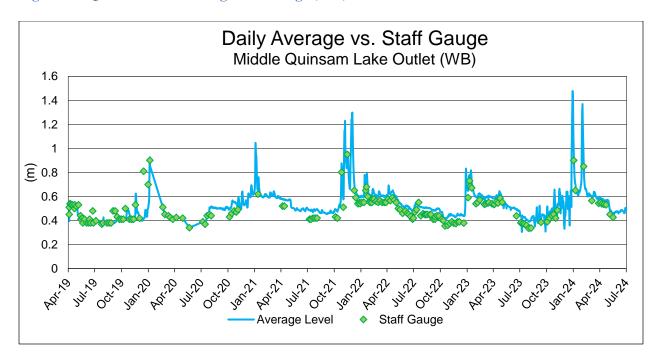


Figure 22: Middle Quinsam Outlet (WB)

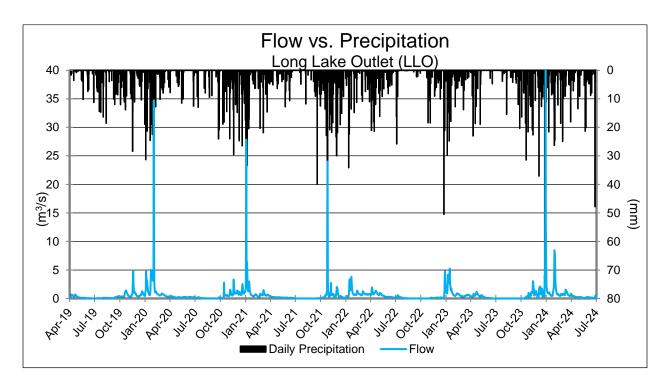


Figure 23: Long Lake Outlet (LLO)

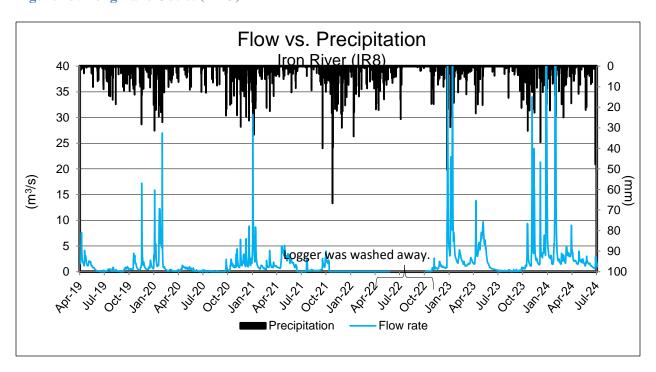


Figure 24: Iron River (IR8)

5.1 RECEIVING ENVIRONMENT (STREAMS AND LAKES) MONITORING SITES

Monitoring stations captured within the Quinsam Mine Site are listed in Table 3, below.

Table 3: Receiving Water (Streams and Lakes) Monitoring Sites

Streams	Lakes	Site Code for Lakes
North Mining Operation		
Quinsam River at Argonaut Road (WA) (EMS # 0126402) – Upstream of mine influence	Middle Quinsam Lake (MQL) Centre at depths of 1 metre (1m), 4 metre (4m), 9 metre (9m) and 1 metre from	MQL1, MQL4, MQL9 and MQLB
Outflow from Middle Quinsam Lake (WB)	bottom (1MB) (EMS # E206618)	
(EMS # 0900504)		
South Mining Operation		
Long Lake Outlet (LLO)	Long Lake at Centre (LLM) at depths of 1m, 4m, 9m, and	LLM1, LLM4, LLM9 and LLMB
(EMS # E219412)	1MB (EMS # E206619)	BENIE
No Name Lake Outlet (NNO)	No Name Lake (NNL) at depths of 1m, 4m, 9m, and	NNL1, NNL4, NNL9 and
(EMS # E217017)	1MB (EMS # E217018)	NNLB
7-South Mining Operation		
Quinsam River upstream of 7 South Mining Operation (QRDS1) (EMS # E286930)	Lower Quinsam Lake (LQL) (EMS # E292118) at depths of 1m, 4m, 9m, and 1MB	LQL1, LQL4, LQL9 and LQLB
Quinsam River downstream of 7 South Mining Operation (7SQR) (EMS # E292113)	, , , , , , , , , , , , , , , , , , , ,	
Quinsam River downstream of confluence with Iron River (IRQR) (EMS # E299256)		

5.1.1 WATER HARDNESS

For the purposes of this report, water quality in the receiving environment is compared to Acute and Chronic BC Water Quality Guidelines for Freshwater Aquatic Life (WQG). For those parameters that are hardness dependent the guideline has been derived using background (i.e., monitoring location WA) hardness (~30mg/L) at all stations. Quinsam Coal has adopted this approach for the Iron River, as well. Using a hardness of 30 mg/L provides a conservative comparison of receiving environment water quality when comparing to hardness dependent WQG's (i.e. dissolved sulphate). Total aluminum (Al-T) and dissolved copper (Cu-D) are the only parameters where the actual ambient water chemistry is used.

5.1.2 Total Aluminum

The chronic WQG for Al-T are based on individual results rather than averages over a specific period. These guidelines aim to protect aquatic organisms from chronic exposure to elevated aluminum levels. The chronic WQG equation is valid between hardness 10 and 430 mg/L, pH 6 and 8.7, and DOC 0.08 and 12.3 mg/L, which are the ranges of data used to derive the MLR slopes. The BC WQG Calculator was adapted from the Federal Water Quality Guideline for Al and is designed to only work within the domain of the MLR model.

The B.C. WQG for total Aluminium equation:

B.C. WQG (
$$\mu$$
g/L) = (exp([0.645 × ln(DOC)] + [2.255 × ln(hardness)] + [1.995 × pH] + [-0.284 × (ln(hardness) × pH)] -9.898))/3

Refer to the below graphs, Figure 25 and Figure 26, displaying the concentrations of Al-T compared to the variable chronic WQG's for receiving and non-receiving environment monitoring locations.

As displayed only NNL (4m, 9m and 1MB) was elevated above the chronic WQG for Al-T.

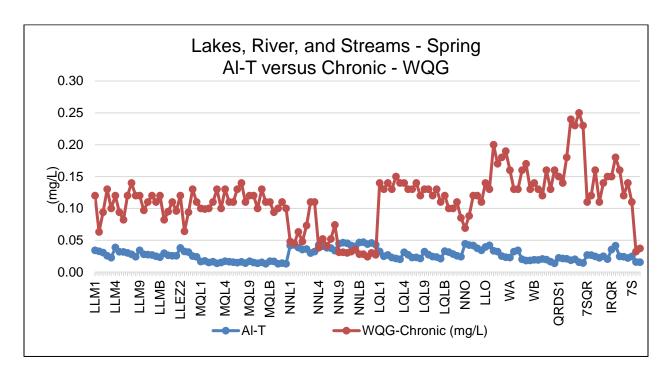


Figure 25: Receiving Environment Sites – Al-T versus Chronic WQG's

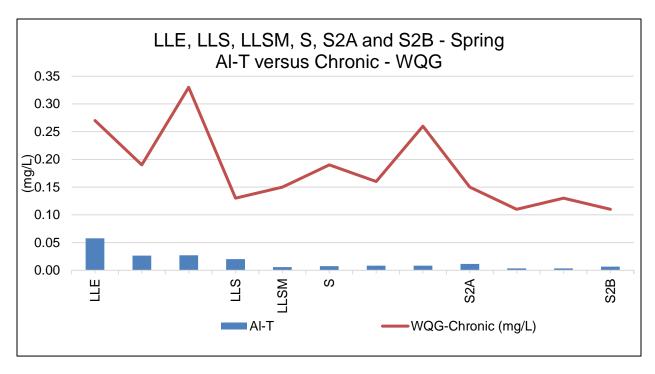


Figure 26: Non-Receiving Environment Sites – Al-T versus Chronic WQG's

5.1.3 DISSOLVED COPPER

To obtain the dissolved copper Water Quality Guideline ambient water quality from the site-specific receiving environment sites is uploaded into the British Columbia Copper Biotic Ligand Model Database. The database uses specific water chemistry per site such as hardness, pH, temperature and dissolved organic carbon and derives a site specific acute and chronic WQG for copper. Appendix 1, Tables 3 and 4 provide a summary of those parameters observed above WQG's for spring monitoring.

Refer to the below graph's (Figure 27 though Figure 28), that display the Acute WQG's derived for copper compared to individual results from receiving and non-receiving environment sites during spring.

Receiving water quality during spring mostly remained below the acute copper guidelines derived from site specific chemistry. No Name Lake at 9m and 1MB were the only sites elevated above the acute WQG's. Non-receiving environment sites (LLE, 7S, LLS, LLSM, S, S2A and S2B) remained below acute WQG's.

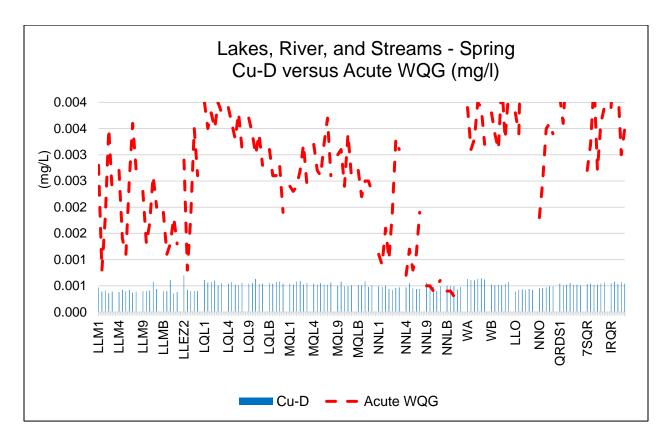


Figure 27: Receiving Environment Site - Cu-D versus Acute WQG's

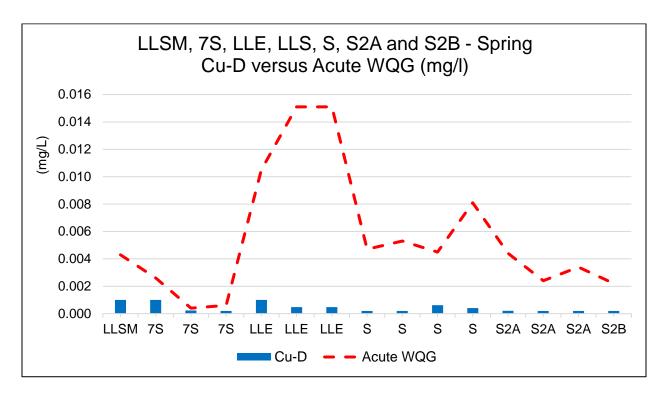


Figure 28: Non-Receiving Environment Site – Cu-D versus Acute WQG's

Chronic WQG's are compared to individual results (Figure 29) and the average of 5 weeks compared to chronic WQG's (Figure 30).

Individual results compared to chronic copper WQG 's was elevated upstream and downstream of mine influence, expect at LLO and QRDS1 (Figure 29). Averaged results were elevated above the chronic WQG's upstream of mine influence on the Quinsam River (WA) and in the lakes (NNL, LL, MQL and LQL) except in LL at 4m and LQL at 1m and 4m depths. All other locations downstream of mine influence (LLO, WB, QRDS1, 7SQR and IRQR) remained below the chronic WQG's (Figure 30).

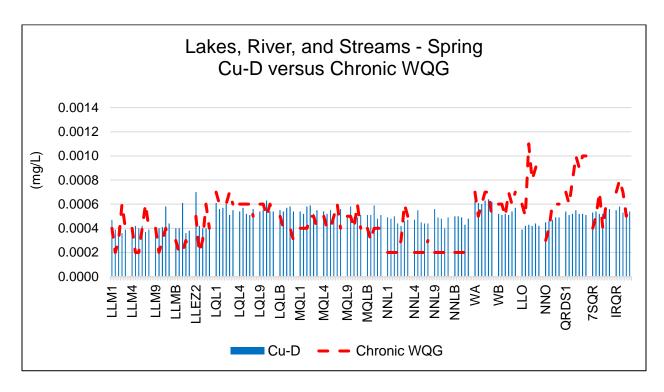


Figure 29: Receiving Environment Sites – Cu-D versus Chronic WQG's

Figure 30: Receiving Environment Sites – Averaged Cu-D versus Chronic WQG's

5.2 Lakes

The spring lake monitoring program included No Name Lake (NNL), Long Lake (LLM), Middle Quinsam Lake (MQL) and Lower Quinsam Lake (LQL). Beside the parameters (total aluminum and dissolved copper) no other parameter concentrations were trending above WQG's for spring monitoring. Appendix 1, Tables 3, 4 and 42 display parameter concentrations compared to WQG's.

Spring monitoring is meant to capture the spring freshet or turn over event when the deeper portions (hypolimnion) have been replenished with dissolved oxygen as the ambient temperature increases. The water near the surface of the lake (epilimnion) is replaced with the water near the bottom of the lake (hypolimnion) to establish a homogenous mixture. This is called stratification. The cold-water sinks to the bottom while the warm water floats to the top. There are typically three layers, the epilimnion (top), thermocline (middle), and hypolimnion (bottom). Spring marks the transition from winter to spring. Turnover, also called lake mixing, is a natural process that occurs when the water in a lake mixes vertically.

Depth profiling for physical parameters is performed at every meter from surface to 1 meter from bottom with an Exo Sonde that captures pH, conductivity, temperature, dissolved oxygen (DO) and oxidation reduction potential (ORP). Water chemistry samples are collected for laboratory analysis at 1 metre (1m), 4 metre (4m), 9 metre (9m) and 1 metre from bottom (1MB). Appendix 1, Table 38 through 41 display the depth profiling results for the lakes.

Noteworthy observations resulting from the lake monitoring program include:

- Average sulphate concentrations were measured below the water quality guideline (128 mg/L) in all lakes.
- Dissolved copper was elevated in all lakes, possibly related to spring turnover.
- NNL (4m, 9m and 1MB) was elevated above the chronic WQG for Al-T.

Increased temperature gradients were evident in all lakes as monitoring progressed over the 5 weeks of sampling. Lake temperatures on surface increased from 7.92 (NNL) degrees Celsius to 13.3 degrees Celsius (LQL) over the 5 weeks of sampling. Refer to Figure 31 and Figure 32 for temperature versus depth comparison in the lakes.

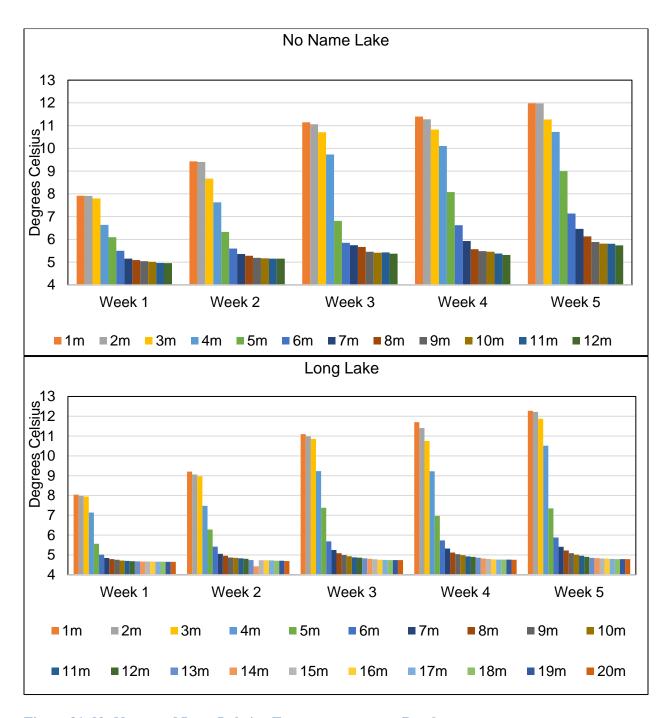


Figure 31: No Name and Long Lake's - Temperature versus Depth

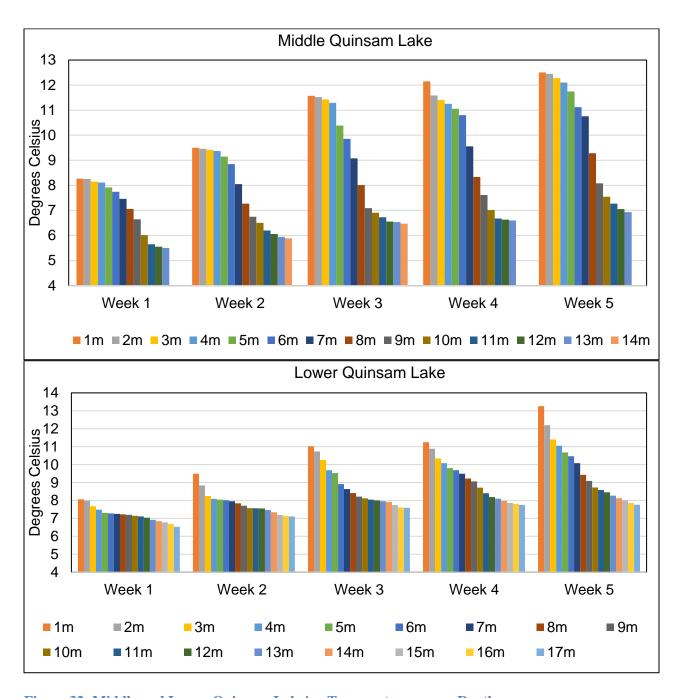


Figure 32: Middle and Lower Quinsam Lake's - Temperature versus Depth

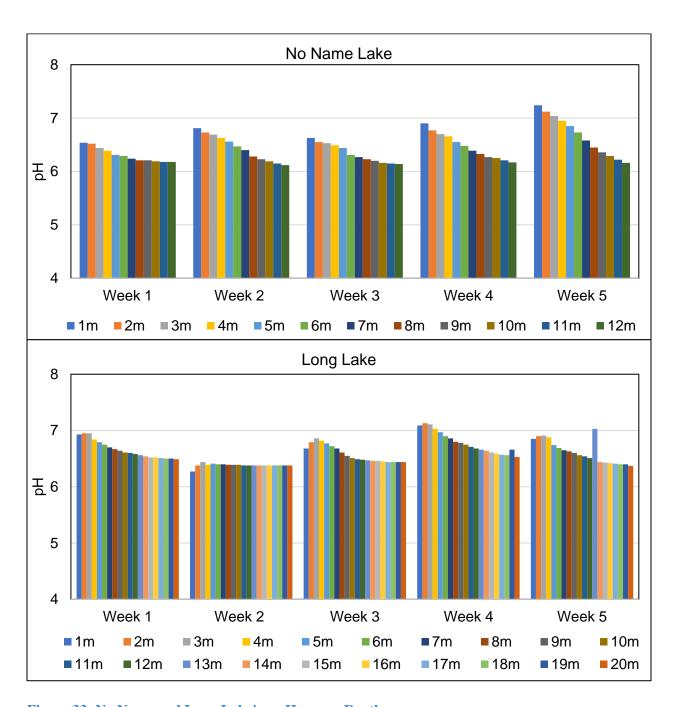


Figure 33: No Name and Long Lake's – pH versus Depth

For No Name Lake average results for pH ranged from 6.15 (1MB) to 6.82 (1m). Average pH fell below the chronic minimum WQG of 6.5 at depths below 5 m, following historical trends. For Long Lake average results for pH ranged from 6.44 (1MB) to 6.85 (3m). Average pH fell just below the chronic minimum WQG at depths of 11 m and 12 m. This trend also follows historical trends as No Name Lake flows into Long Lake. No Name Lake's slightly acid conditions influence Long Lake, Figure 33.

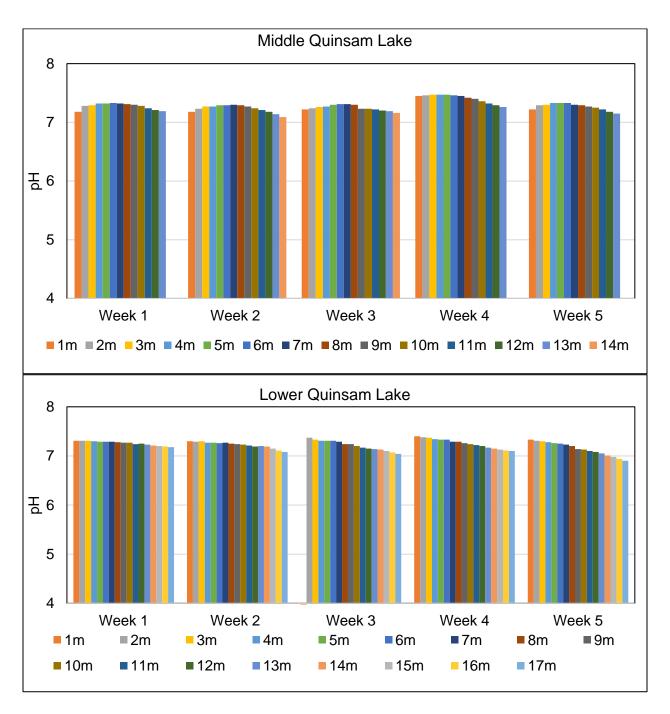


Figure 34: Middle and Lower Quinsam Lake's - pH versus Depth

For Middle Quinsam Lake average results for pH ranged from 7.13 (1MB) to 7.34 (5m). For Lower Quinsam Lake average results for pH ranged from 7.06 (1MB) to 7.34 (1m). Average pH remained above the chronic minimum WQG at all depths in both lakes, Figure 34. Both lakes are neutral to slightly alkaline.

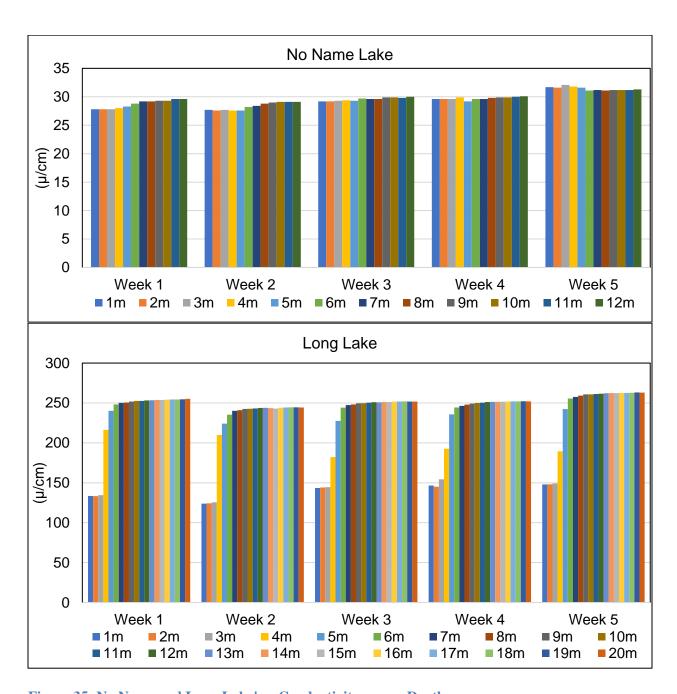
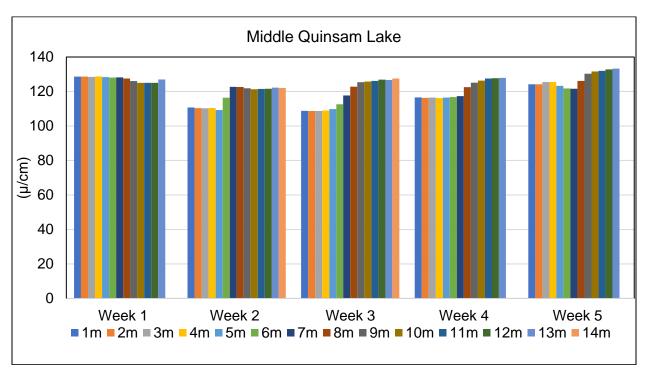



Figure 35: No Name and Long Lake's – Conductivity versus Depth

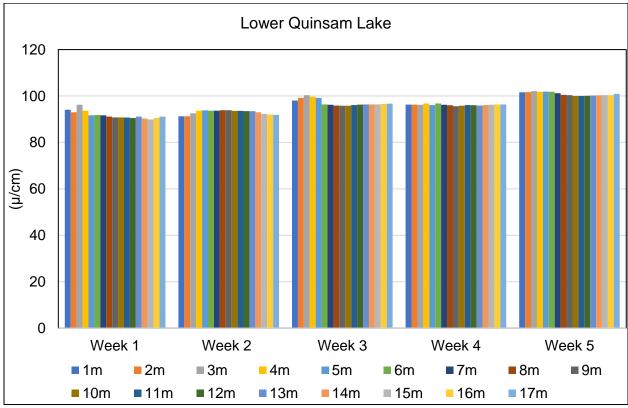


Figure 36: Middle and Lower Quinsam Lake's - Conductivity versus Depth

Average conductivity ranges from 30 μ s/cm in No Name Lake to between 139 μ s/cm and 253 μ s/cm in Long Lake. In Middle Quinsam Lake, conductivity ranges from 117 μ s/cm to 127 μ s/cm, while in Lower Quinsam Lake, it ranges from 95 μ s/cm to 98 μ s/cm. No Name Lake has the lowest conductivity as it is situated above any known mine influence. Long Lake has the highest conductivity of all four lakes, with concentrations nearly doubling in depth (greater than 5 meters), indicating a definite mine influence from the 2 and 3 South mines. Middle Quinsam and Lower Quinsam Lakes have similar conductivity ranges (95 μ s/cm to 127 μ s/cm), with Middle Quinsam displaying lower concentrations at the surface. Refer to Figure 35 and Figure 36, above.

Sulphate concentrations, like conductivity, are used as indicators of mine influence in a freshwater system and vary significantly between No Name Lake and all other downstream lakes monitored. Average sulphate concentrations in No Name Lake are less than 2.5 mg/L throughout the lake. In Long Lake, average concentrations are 41 mg/L, 57 mg/L, 81 mg/L, and 78 mg/L at 1 meter, 4 meters, 9 meters, and 1 meter from the bottom (1MB), respectively. This is due to mine influence on Long Lake from underground workings and discharge from LLE near the outlet. Refer to Figure 37, below.

Average sulphate concentrations in Middle Quinsam Lake ranged from 21 mg/L to 25 mg/L at depths of 1m, 4m, 9m, and 1MB. In contrast, Lower Quinsam Lake exhibited average concentrations of less than 16 mg/L throughout (Figure 38).

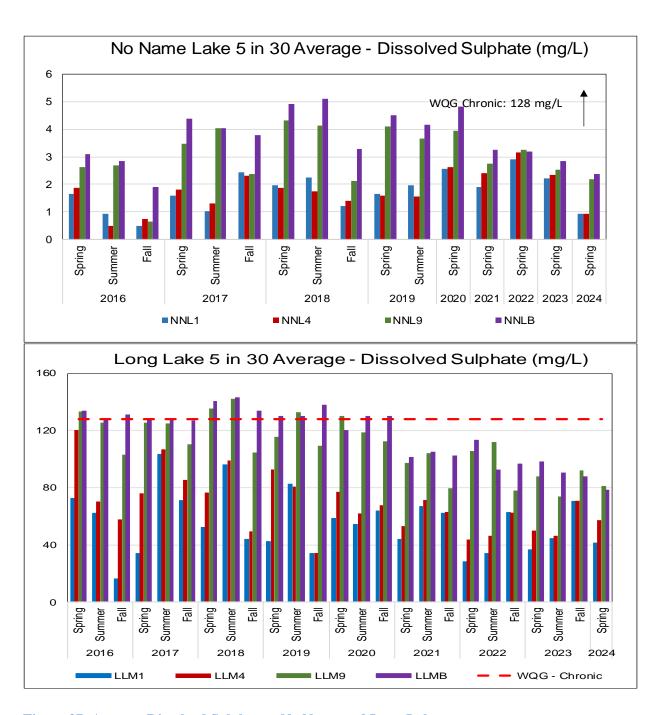


Figure 37: Average Dissolved Sulphate – No Name and Long Lakes

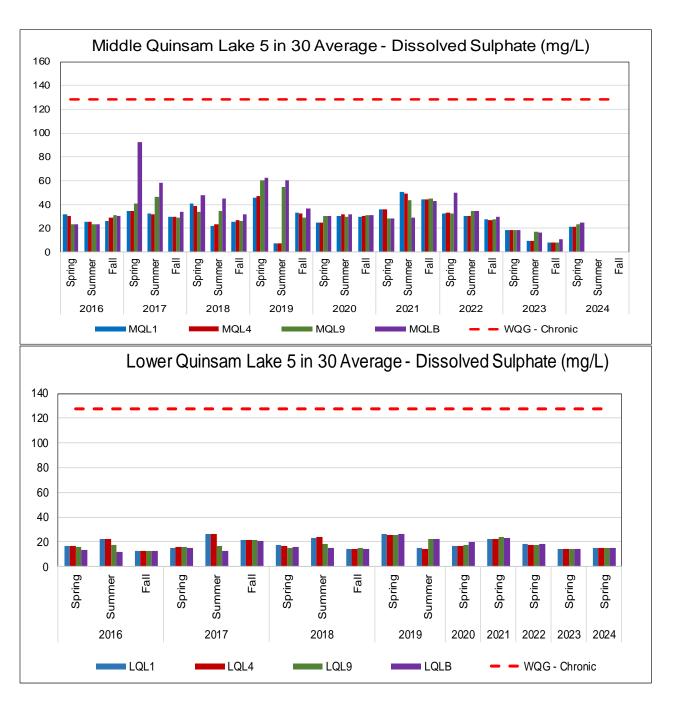


Figure 38: Average Dissolved Sulphate – Middle and Lower Quinsam Lakes

5.3 STREAMS AND RIVERS

The five-sample, thirty-day receiving environment program at river and stream sites began on March 28th and concluded on April 22nd. Appendix I, Table 43 presents the water quality results from this program, comparing them to the Water Quality Guidelines (WQG) for the Middle Quinsam Lake Sub-basin and Iron River. For a summary of WQG observations, refer to Appendix 1, Tables 3 and 4.

Spring monitoring stations within the Middle Quinsam Lake sub-basin and Quinsam River include:

- ➤ Middle Quinsam Lake Inlet (WA),
- ➤ Middle Quinsam Lake Outlet (WB),
- Quinsam River Downstream Site 1 (QRDS1)
- ➤ No Name Lake Outlet (NNO),
- ➤ Long Lake Outlet (LLO),
- > 7-South Quinsam River (7SQR),
- > Quinsam River downstream of the confluence with Iron River (IRQR).

All parameters remained below the acute and chronic WQG's in spring on the Quinsam River.

Arsenic remained below the chronic WQG of 0.005 mg/L at all locations in the Quinsam River. Arsenic has been identified as a parameter of concern (POC) and shows incremental increases in average concentrations between upstream and downstream locations on the Quinsam River. The most significant rise in average concentrations, from Middle Quinsam Lake Outlet (WB) to downstream at 7SQR, was 0.000398 mg/L. This increase is likely due to shallow groundwater interacting with arsenic-laden strata, picking up arsenic and transporting it into the river. The highest average arsenic concentration was observed at IRQR (0.000662 mg/L), attributed to contributions from the Iron River. Refer to, Figure 39 below.

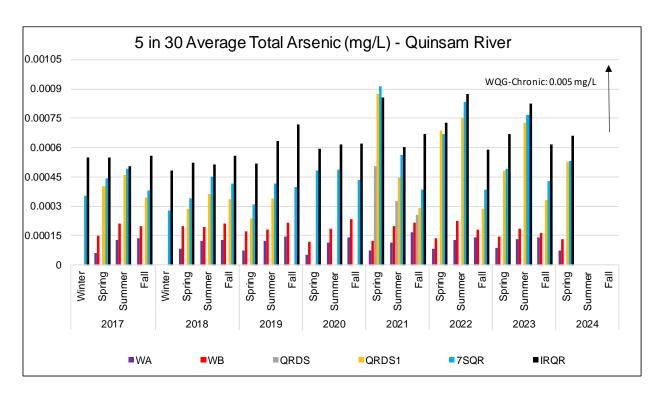


Figure 39: Average Total Arsenic - Quinsam River

Dissolved iron, another POC was also found well below the acute WQG of 0.35 mg/L. The site 7SQR, displayed the highest concentrations in spring ranging from 0.04 mg/L to 0.08 mg/L. Refer to Figure 40, below.

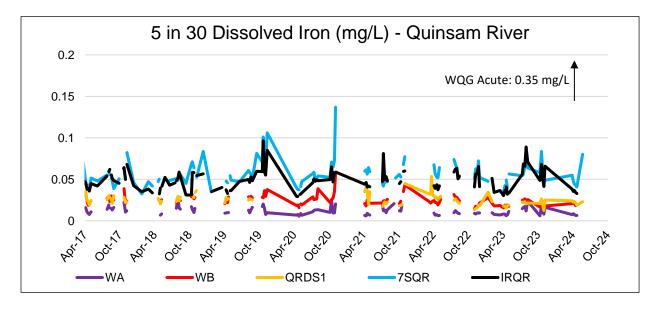


Figure 40: Dissolved Iron - Quinsam River

The primary indication of mine influence on water quality is the increase in dissolved sulphate levels downstream compared to the upstream location (WA). During spring monitoring, dissolved sulphate remained below the chronic WQG of 128 mg/L on the Quinsam River. Average concentrations rose from 0.6 mg/L at WA to 24 mg/L at WB, reflecting the mine's impact from both authorized discharge points, SP1 and SP4. In spring, average sulphate levels were similar across downstream sites (WB, QRDS1, and 7SQR), all below 25 mg/L, while IRQR showed lower concentrations due to dilution from the Iron River. Refer to Figure 41, below.

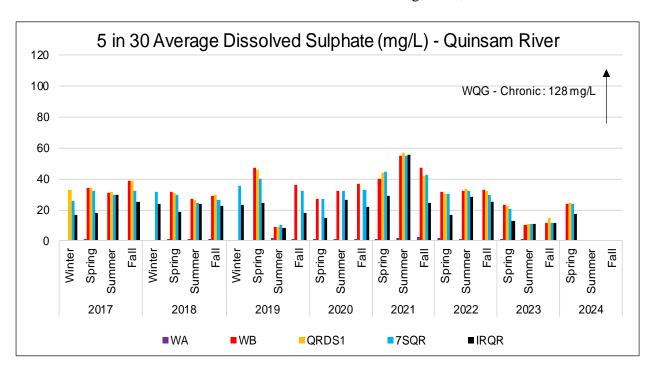


Figure 41: Average Dissolved Sulphate - Quinsam River

5.3.1 Non-Receiving Environment Sites (LLE and Seeps)

Site LLE, a wetland, is the initial dilution zone for the South water management system discharge into Long Lake. For the Long Lake Seeps (LLS and LLSM), dissolved sulphate was elevated at both sites, and total iron was elevated at LLS. Flows at the seeps stopped reaching the lake in early April, with LLS flowing for 7 days and LLSM for 12 days. Sampling occurred only when water flowed through the weir and H-Flume. Low flow rates this quarter were due to increased pumping in the 2-South Mine.

The Long Lake Seeps are not considered receiving environment sites, but WQG's are used for comparison. New potential mine-related seepages on the Quinsam River, referred to as S and S2 (A and B), are compared to WQG's for observation.

Key observations:

- ➤ Long Lake Seeps flowed for only one month.
- Elevated dissolved sulphate at both LL seeps (410 mg/L and 610 mg/L).
- ➤ Elevated total iron at LLS (1.22 mg/L).
- ➤ One out of three LLE results above Acute WQG for dissolved iron (0.35 mg/L).
- ➤ Rolling averages for weekly sulphate at LLE were above chronic WQG (128 mg/L), ranging from 150 mg/L to 208 mg/L.
- ➤ Peak sulphate concentrations at LLE were observed with decreased flow rates.
- Elevated arsenic concentrations at S and S2 above chronic WQG (0.005 mg/L).
- Elevated total boron at S above chronic WQG (1.2 mg/L).

Refer to Appendix I, Table 3 for individual results.

5.4. CONCLUSION

Water quality within the Quinsam subbasin is generally meeting Water Quality Guidelines (WQGs) and Water Quality Objectives (WQOs) on most sampling dates in Spring 2024 for the Quinsam River and the four lakes (No Name, Long, Middle Quinsam, and Lower Quinsam Lakes). Dissolved sulphate, a key parameter of interest, remained below the WQG of 128 mg/L at all sampled depths (1m, 4m, 9m, and 1MB) in all lakes. While total aluminum levels were elevated related to lake turnover and spring freshet in No Name Lake, as well as dissolved copper levels in all lakes and upstream of mine influence, exceeding WQGs, no other parameters showed trends above the guidelines.

5.5 BIOTA MONITORING IN THE RECEIVING ENVIRONMENT

Phytoplankton and zooplankton are monitored every year at one station in each of No Name, Long, Middle Quinsam, and Lower Quinsam lakes. Refer to Appendix II for a description of sampling objectives, methods, QA/QC and all historical and present phytoplankton and zooplankton data.

Water sampling in the Quinsam Lakes system is conducted during the growing season to comply with long-term water quality monitoring requirements set by the Env. From 1994 to 2013, the permit mandated sampling at depths of 1 m, 4 m, and 9 m from April to September for Long Lake and Middle Quinsam Lake. No Name Lake was included in June 2012, and Lower Quinsam Lake was added in 2013. In 2014, the permit was revised to limit sampling to surface water (1.0 m depth) three times a year (spring, late summer, and fall overturn). Please refer to Appendix II, Quinsam Lakes Phytoplankton, May 2024, Attachment A contains the long-term dataset.

Quinsam Coal collects the samples and submits them to Stantec Consulting Ltd. for phytoplankton taxonomic analysis as part of ongoing monitoring requirements. Occasionally, an additional sample is taken as a field replicate for quality assurance/quality control. This brief report provides information about samples collected in May 2024 from Long Lake, No Name Lake, Middle Quinsam Lake, and Lower Quinsam Lake. Please refer to Appendix II, Quinsam Lakes Phytoplankton, May 2024, Attachments B and C. These Attachments B and C provide results for May 2024, and Attachment C includes copies of the chain of custody forms for May.

5.5.1 CHLOROPHYLL "A AND PHYTOPLANKTON ABUNDANCE

Chlorophyll "a" concentrations provide an indication of overall phytoplankton biomass at any given time and provide a basis for comparing primary production among lakes. Spring results for Chlorophyll "a" and phytoplankton abundance are shown in Figure 42 and Figure 43 collected at all four lake's.

Chlorophyll "a" results for No Name, Long, Middle and Lower Quinsam Lakes were (0.78 ug/L, 0.6, 0.61, and 1.00 ug/L), respectively. Lower Quinsam Lake displayed peak abundance with No Name Lake second indicating adequate food source for phytoplankton during spring. Spring results were within the historical range.

Figure 43 displays spring historical to present total abundance samples. Abundance is summarized in Table 4, as total and by size fraction (identified at 1000X, 400X, and 100X magnifications, with the smallest size fraction less than 5 μ m. Total abundance for May ranged from 990 cells/mL (No Name Lake) to 3,500 cells/mL (Lower Quinsam Lake). Lower Quinsam displayed the second highest abundance since monitoring began with 2020 reporting highest concentrations (4000 cells/mL). Peak abundance and chlorophyll "a" concentrations coincided for Lower Quinsam and not for No Name Lake. These numbers are in the range reported historically.

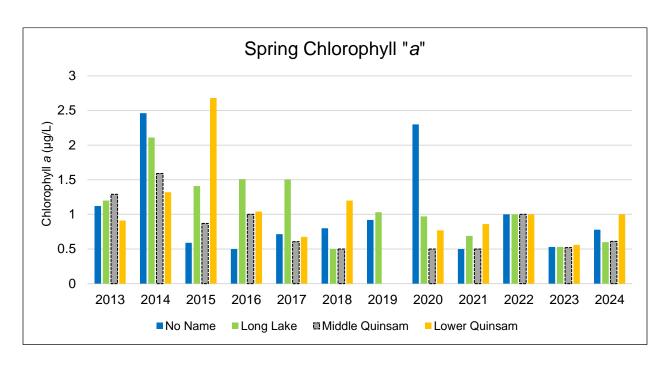


Figure 42: Spring Chlorophyll "a"

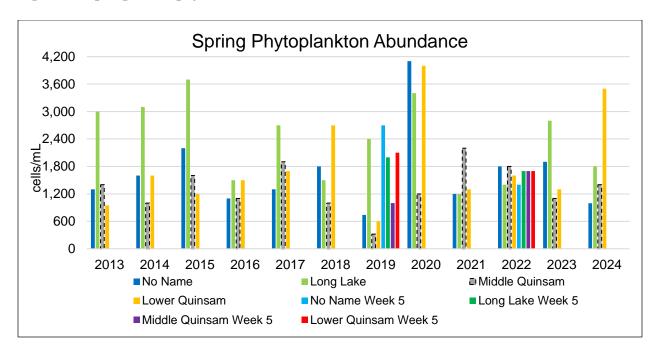


Figure 43: Spring Phytoplankton Abundance

Lakes 2024	Data	Abundance (cells/mL) at 1 m depth						
Lakes 2024	Date	Total	<5 μm (1000 X)	5 to 25 μm (400 X)	>25 μm (100 X)			
Long		1,800	1,600	130	57			
Middle Quinsam	N.4	1,400	1300	160	0.5			
No Name	— May- — 08	990	820	170	0.1			
No Name (replicate)	08	1,000	830	180	0			
Lower Quinsam		3 500	3 000	500	29			

Table 4: Table 1 Phytoplankton Abundance (cells/mL) in the Quinsam Lake System, 2024

5.5.2 Species Composition

Phytoplankton species composition data for the May 2024 samples are contained in Appendix II, Attachment B. The most abundant phytoplankton in the four lakes were the very small (less than or equal to 5 µm) chrysoflagellates (*Ochromonas* spp. and *Chromulina* spp.). Although these ultrananoplankton species were very abundant numerically, they usually contribute little to algal biomass.

Among the larger algae, the most abundant species were as follows:

- Long Lake chrysophytes *Ochromonas* spp. and *Dinobryon cylindricum* (predominant)
- ➤ Middle Quinsam Lake *Ochromonas* spp. (predominant)
- ➤ No Name Lake chrysophytes *Ochromonas* spp. and *Mallomonas spp.*, green alga *Oocystis* sp., and cryptophytes *Rhodomonas minuta* and *Cryptomonas* spp. (common, no clear dominant taxa).
- ➤ Lower Quinsam Lake Ochromonas spp. (predominant), *Dinobryon sociale*, *Rhodomonas minuta*, and *Cryptomonas* spp. (common).

The May 2024 samples were similar in composition and abundance to samples collected during the spring in recent years.

5.6 ZOOPLANKTON

Zooplankton form the second trophic level in the water column of lakes (secondary producers), grazing on phytoplankton, consuming organic matter, and providing a food source for juvenile fish (Wetzel 2001). Abundance and composition of the zooplankton community vary among lakes due to variation in water chemistry, lake characteristics, and grazing pressures from fish (Wetzel 2001).

According to PE:7008, zooplankton are monitored in the Quinsam mine receiving environment three times per year at one station in Middle Quinsam and Long Lakes. Lower Quinsam and No Name Lakes are monitored once a year (spring) as of Permit amendment in November 2019. Since

2014, zooplankton samples have been collected once in the spring, summer, and fall during the 5 in 30 water quality sampling periods.

Samples were collected using a Wisconsin Plankton Sampler (63 µm net) in a 10 m vertical tow, with one sample collected per lake. Samples were preserved with Formalin sent to Biologica Environmental Services, Ltd in Victoria for analysis. Refer to Appendix II, Freshwater Zooplankton Enumeration and Identification Methods Report and Quinsam Coal Corporation for taxonomic analyses. Organisms were counted and identified to the lowest practical level.

5.6.1 RESULTS

Zooplankton species composition data for the May 2024 organisms per sample are displayed in the below Figures 44 through and available in Appendix II.

Abundance is summarized in Table 5, as total and individual organisms. Total abundance for May ranged from 3713 organisms / sample, (No Name Lake) to 8,214 organisms / sample (Lower Quinsam Lake). Lower Quinsam displayed peak abundance in May 2024 reporting highest concentrations. All lakes displayed an increase in total abundance since 2014.

Among the lakes the most abundant species (organisms / sample) were as follows:

- ➤ Long Lake Rotifera (1750 organisms / sample)
- ➤ Middle Quinsam Lake Copepod Nauplii (2900 organisms / sample)
- ➤ No Name Lake Rotifera (1700 organisms / sample) and Replicate (1550 organisms/sample)
- ➤ Lower Quinsam Lake Rotifera (4600 organisms / sample)

Table 5: Zooplankton Abundance (organisms / sample)

			Abundance (organisms/sample)						
Lakes 2024	Month	Total Abundance	Cyclopoida	Calanoida	Cladocera	Rotifera	Copepod Nauplii		
	May	3713	163	169	1075	1700	1075		
No Name	May Rep.	3329	163	133	667	1550	817		
Long	May	3511	339	132	339	1750	950		
Middle Quinsam	May	3680	82	42	256	400	2900		
Lower Quinsam	May	8214	2107	14	143	4600	1350		

Refer to Figure 44: Spring Zooplankton – Species Composition and historical to present graphs for all four lakes, Figure 45: No Name and Long Lakes - Zooplankton Species Composition –

Spring and Figure 46: Middle and Lower Quinsam Lakes - Zooplankton Species Composition – Spring.



Figure 44: Spring Zooplankton – Species Composition

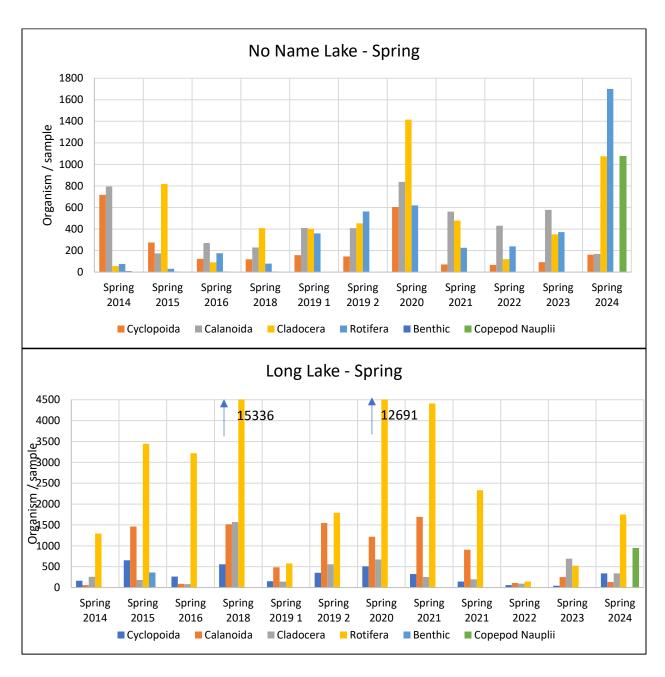


Figure 45: No Name and Long Lakes - Zooplankton Species Composition - Spring

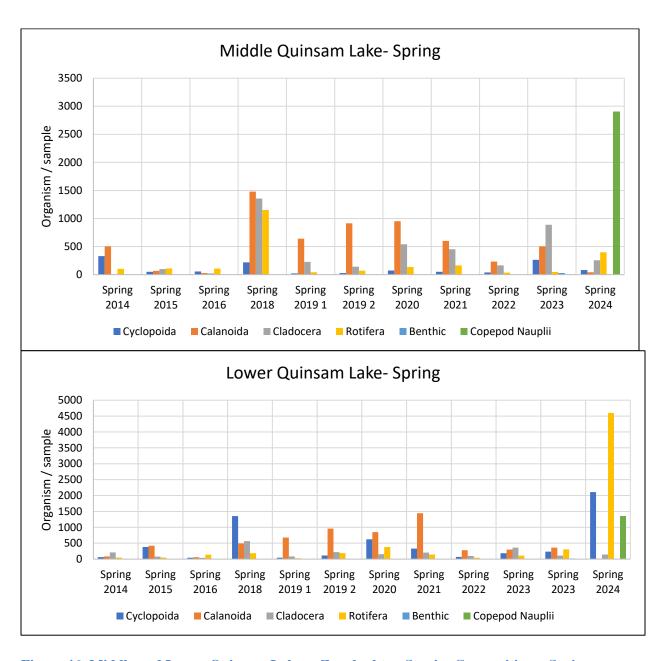


Figure 46: Middle and Lower Quinsam Lakes - Zooplankton Species Composition - Spring

5.7 CONCLUSION

Variations in total abundance when comparing lake phytoplankton and zooplankton abundance may be related to the month sampled and phytoplankton blooms and zooplankton life stages. Differences in taxonomic composition are related to seasonal conditions, including food supply (phytoplankton and organic matter) and grazing pressures from fish. The larger Copepods and

Cladocera's are preferred food sources for fish. All four lakes are known to be fish bearing (e.g., salmon and trout species), but there is not enough information about fish populations to estimate grazing pressures on zooplankton. Both Long, Middle and Lower Quinsam Lakes are stocked in the spring by the Quinsam Fish Hatchery. Historical to present graphs (Figure 45 and Figure 46) display the species composition for Lake's.

6.0 In-situ Mine Water and Ex-situ Groundwater

Groundwater wells are classified as either in-situ or ex-situ:

- **In-situ**: Located within the mine workings, representing water accumulated in the mining void. If groundwater well samples are unavailable, underground sump samples are used.
- **Ex-situ**: Located outside the mine workings, reflecting formation groundwater and seepage from flooded mine voids. This includes wells up-gradient of the workings and baseline groundwater wells.

Both types of wells are compared to the British Columbia Contaminated Site Regulation (CSR) standards for freshwater Aquatic Life (AW), assuming a 1:10 dilution for groundwater discharged to freshwater systems.

Monitoring of groundwater wells, underground sumps, and dewatering wells in various mine areas revealed certain parameters exceeding CSR-AW standards, including arsenic (mainly in ex-situ groundwater), chloride, sulphate, and sulphide as H2S. Selenium was also observed in deep ex-situ groundwater.

Key findings:

- Elevated arsenic in ex-situ groundwater at several locations throughout the site.
- Elevated arsenic, cadmium, and sulphate in in-situ flooded mine voids and underground sumps.
- Elevated hydrogen sulphide in both in-situ and ex-situ groundwater.

Potential seepage areas near the Quinsam River are monitored for water quality, with arsenic, chloride, and sulphate closely correlated with shallow groundwater at QU11-09 S and QU11-05 S.

For detailed well descriptions and results, refer to Appendix 1, Tables 32-34 and Figure 47.

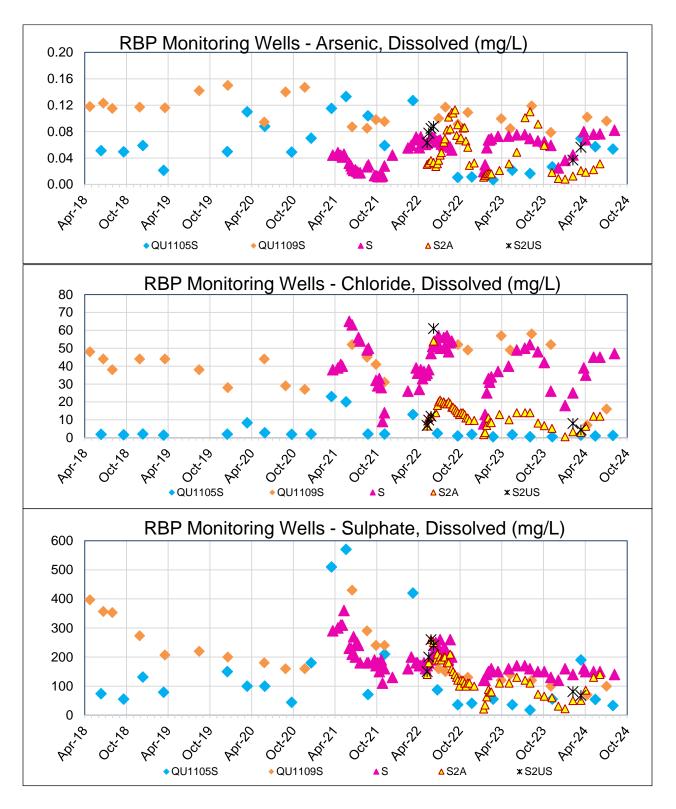


Figure 47: Shallow Groundwater (RBP) and Seeps – Arsenic, Chloride and Sulphate

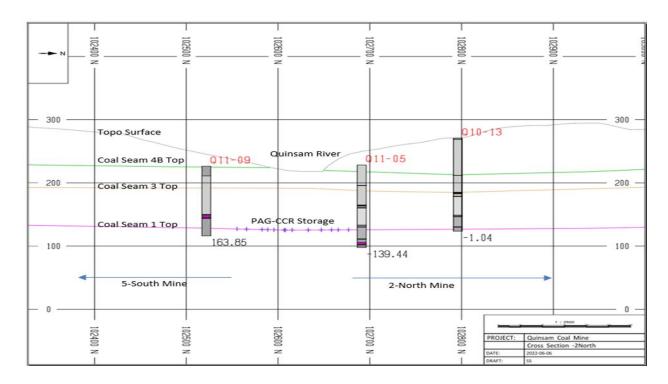


Figure 48: Cross Section in North-South Direction Near Seepage Areas by QU11-09 and QU11-05

Figure 48: Cross Section in North-South Direction Near Seepage Areas by QU11-09 and QU11-05, above displays a cross section in North-South direction near the seepage areas S at QU11-09 and S2 at QU11-05. The numbers at the bottom of each borehole are the distance offset from the cross-section line. Positive (negative) signs indicate borehole locations north (south) of the cross-section line. The PAG-CCR storage area (blue cross) is projected on the coal seam 1 top surface, where the coal was mined at 2-North. Non-arrowed polylines represent different surfaces.

The relationship between flow rates at the seeps and water elevations in the 2-North flooded mine voids continues to be evaluated. Work is underway for the Minesite Water Balance and Source Terms Update, with results expected in Fall 2024. These efforts aim to enhance our understanding and management of groundwater quality, to ensure environmental safety and compliance with regulatory standards.

7.0 Passive Treatment System (PTS)

The PTS was operating throughout the quarter. The 2-South well pump was dewatering the 2-South flooded mine void at an average flow rate of 7.77 L/s. Water was entering the PTS at the BCR at an average flow rate of 4.5 L/s with 3.27 L/s of untreated mine water flowing into the 2-South pit. The objective being to pump down the mine pool faster to stop the seep discharge for a longer period. The mine pool water level was measured at 11.2 m above the pump in April and decreased to 9.2 m at the end of June. Seepage stops from both seeps at a mine water elevation of

around 301 to 303 Masl and starts at 304 Masl measured at Groundwater well, MW004. Groundwater levels in MW004 also relate to the seep flow as displayed in Figure 49, below.

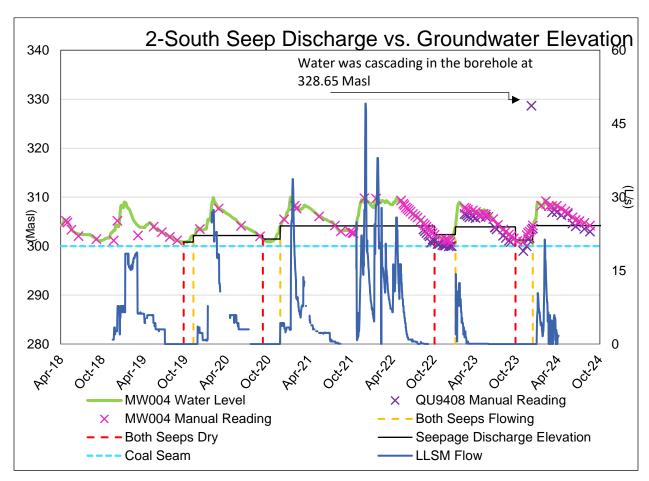


Figure 49: Water Level Versus Long Lake Seep Flow

Average concentrations of dissolved sulphate have been entering the system from the 2-South mine pool measured at INF resulting in 631 mg/L, average sulphate at the BCR was 572 mg/L and leaving the system at SPCEFF resulting in 492 mg/L. This has led to a reduction in average sulphate of 139 mg/L. The station 2-South Inflow (2SI), receives discharge from the PTS, had an average sulphate concentration of 480 mg/L and SPD averaged 356 mg/L, during Q1. Overall, a quarterly average sulphate reduction of 275 mg/L was attained between INF and SPD. The original reduction goal for the PTS, was to reduce sulphate concentrations to 300 mg/L. This goal was close to being achieved this quarter, refer to Figure 50: Average Sulphate and Average Sulphate Reduction, below.

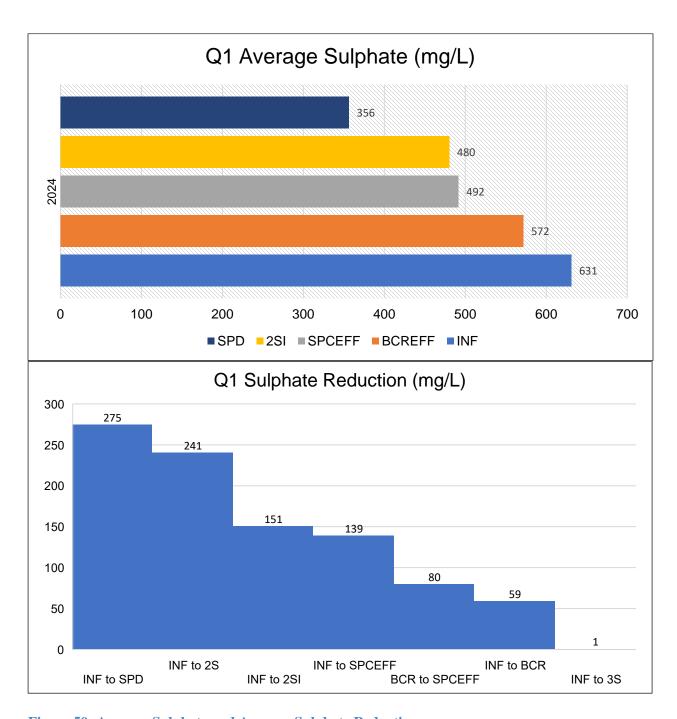


Figure 50: Average Sulphate and Average Sulphate Reduction

The PTS is effective at maintaining water cover over the PAG-CCR in the 2-South pit and reducing discharge at the Seep into Long Lake during low flow periods. This is accomplished by decreasing the elevation of the mine pool below the elevation of the seeps. The period of "no flow" at the Middle Seep into Long Lake (LLSM) has been observed to be extended by pumping down the mine pool. In Q1 both seeps discharge flow paths were so low in early April the water stopped

reaching the lake and eventually ceased flowing. This is the first time in 16 years that this has occurred, with water elevations so low in the mine void during April. The larger seep (LLSM) only flowed from December 29th, 2023, until April 2, 2024, when it was flowing through the H-Flume.

Further monitoring of the PTS will continue and includes the 2-South and 3-South systems and groundwater wells QU11-11 (INF) and MW004. Relationships between mine pool water elevations and seep flow rates continue to be developed with observations noted every quarter.

8.0 QUALITY ASSURANCE QUALITY CONTROL

All replicate sampling was performed in compliance with the *British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air Emission, Water, Wastewater, Soil, Sediment, and Biological Samples, 2013 Edition.*

As per these guidelines and in accordance with the Quinsam Coal Quality Assurance/Quality Control (QA/QC) program, one field replicate sample was collected per sampling event. Relative Percent Difference, RPD values were calculated in accordance with the B.C. field sampling manual. Refer to Appendix 1, Tables 44 to 46.

9.0 CONCLUSION

Quinsam Coal is dedicated to reducing the environmental impacts as a result of mining on the receiving environment. Overall, there were no permit limit exceedances and few parameters outside the provincial Water Quality Guidelines in the receiving environment this quarter. This exemplifies that the environmental management practices employed by the mine are effective at reducing impacts to the surrounding environment. In closing, we trust the information presented in this report satisfies the conditions under Effluent Permit PE-7008. Please contact the Environmental Department if you have any questions or comments.

Appendix 1 - Tables

Table of Contents

Appendix 1 - Tables

Table of Contents

Table 26 Discharge From Settling Pond #4 1 Page(s)
Table 27 Discharge From Settling Pond #1 1 Page(s)
Table 28 Discharge From 7 South Surface 1 Page(s)
Table 29 2S Inflow and Outflow 1 Page(s)
Table 30 Flow Requirements 7 Page(s)
Table 31 Daily Precipitation (mm) 1 Page(s)
Table 32 Groundwater Wells - Description 1 Page(s)
Table 33 Ex-situ and In-situ Groundwater 16 Page(s)
Table 34 In-situ Minewater 18 Page(s)
Table 35 Seepage Near QU1109 (S) 1 Page(s)
Table 36 Seepage Near QU1105 (S2A) 1 Page(s)
Table 37 Seepage Near QU1105 (S2B) 1 Page(s)
Table 38 No Name Lake Depth Profile 1 Page(s)
Table 39 Long Lake Depth Profile 1 Page(s)
Table 40 Middle Quinsam Lake Depth Profile 1 Page(s)
Table 41 LQL Depth Profile 1 Page(s)
Table 42 Spring Lakes 17 Page(s)
Table 43 Spring Rivers 7 Page(s)
Table 44 Relative Percent Difference 19 Page(s)
Table 45 RPD Greater Than 20% 1 Page(s)
Table 46 Blanks 11 Page(s)

Table 1 Description of Effluent, In-Mine Releases and Receiving Environment Monitoring Sites 1 Page(s)

	of Effluent, In-Mine Releases & Receiving Environment Monitoring Sites	T	1	
EMS ID#	Monitoring Sites	Abbreviation (Station Code)	*Type of Water (MW, FW or GW)	
	North Coal Mining Operation			
E207409	Settling Pond #4 Decant	WD	Discharge (MW)	
E207411	Culvert, at Middle Quinsam Lake Road	wc	MW & FW	
E283433	2-North Portal Sump (Adit Sump)	2NPS	MW	
E207412	2-North Pit Sump CCR Cover	WP	PAG-CCR Water Cover - MW	
_	South Coal Mine			
E218582	Settling Pond #1 Decant	SPD	Discharge (MW)	
E217014	Culvert, Downstream End at Access Road	SPC	MW & FW	
E217015	South Pit Main Sump Water	3S	PAG-CCR Water Cover (MW & FW)	
E292127	2-South Pit In Pit Water Cover (2-South Standpipe)	2S	PAG-CCR Water Cover (MW & FW)	
	7-South Mining Operation			
E292069	7-South Surface Decant	7SSD	Discharge (SW)	
E292110	7-South Adit Sump	7SPS	MW	
	Seep Monitoring Sites			
E292131	Long Lake Seeps	LLS & LLSM	GW / MW	
	Culvert that collects groundwater and Coal Main logging road water entering MQL (PDSR)	PDSR	GW / SW	
	Groundwater surfacing with potential mine influence near QU1109	S	GW / SW	
	Artesian spring with potential mine influence near QU1105	S2A	GW / SW	
	Groundwater surfacing with potential mine influence near QU1105	S2US and S2B	GW / SW	
	Receiving Environment Monitoring Sites - Near Initial Zone of	of Dilution (NIDZ)		
Near Initial Dil	ution Zone (NIDZ) Monitoring Sites			
E292130	Long Lake Entrance (South end water entering Long Lake near the outlet)	LLE	NIDZ	
F292109	Road Crossing Bridge on Stream 1 above the Lower Wetland (Downstream of 7SSD). The site name is Stream 1,	75	NID7	
E292109	Road Crossing Bridge on Stream 1 above the Lower Wetland (Downstream of 7SSD). The site name is Stream 1, 7S. Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Mo	7S nitoring Locations	NIDZ	
	7S. Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Mo	•	NIDZ	
	7S. Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation	•	NIDZ	
North Coal Mir	7S. Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Mo	nitoring Locations		
North Coal Mir E0126402 E206618	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre	mitoring Locations	FW FW	
North Coal Mir E0126402	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake	WA MQL (1, 4, 9 & 1m from Bottom)	FW	
North Coal Mir E0126402 E206618 E0900504 South Coal Mir	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake	MQL (1, 4, 9 & 1m from Bottom) WB	FW FW	
North Coal Mir E0126402 E206618 E0900504	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake	MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom)	FW FW	
North Coal Mir E0126402 E206618 E0900504 South Coal Mir E217018 E217017	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake Outlet	MA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO	FW FW FW	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake Outlet Long Lake at Centre	WA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom)	FW FW FW FW	
North Coal Mir E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake Outlet Long Lake Outlet	MA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO	FW FW FW	
North Coal Mir E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4)	MA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO	FW FW FW FW FW FW	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation	WA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1	FW FW FW FW FW FW	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation	WA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 7SQR	FW FW FW FW FW FW FW FW	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre	WA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1	FW FW FW FW FW FW	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre	NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 75QR LQL (1, 4, 9 & 1m from Bottom)	FW FW FW FW FW FW FW FW FW	
North Coal Mir E0126402 E206618 E0900504 South Coal Mir E217017 E206619 E219412 7-South Mining E286930 E292113 E292118 7-South Area 5 E297231	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre Mining Operation Iron River upstream of 7SA5 and 242 influence	NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 7SQR LQL (1, 4, 9 & 1m from Bottom)	FW FW FW FW FW FW FW FW FW	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118 7-South Area 5 E297231 E297232	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre i Mining Operation Iron River upstream of 7SA5 and 242 influence Iron River downstream of 7SA5 and 242 inputs	WA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 7SQR LQL (1, 4, 9 & 1m from Bottom)	FW F	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118 7-South Area 5 E297231 E297232 E299256	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre i Mining Operation Iron River upstream of 7SA5 and 242 influence Iron River downstream of 7SA5 and 242 inputs Quinsam River downstream of confluence with Iron River	NNL (1, 4, 9 & 1m from Bottom) NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 7SQR LQL (1, 4, 9 & 1m from Bottom) IR6 IR8 IRQR	FW	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118 7-South Area 5 E297231 E297232 E299256 E292118	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre Iron River upstream of 75A5 and 242 influence Iron River downstream of 75A5 and 242 inputs Quinsam River downstream of confluence with Iron River Lower Quinsam Lake Centre	WA MQL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 7SQR LQL (1, 4, 9 & 1m from Bottom)	FW F	
E0126402 E206618 E0900504 South Coal Min E217018 E217017 E206619 E219412 P-South Mining E286930 E292113 E292118 P-South Area 5 E297231 E297232 E299256 E292118 Long Lake Seep	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre Iron River upstream of 7SA5 and 242 influence Iron River downstream of 7SA5 and 242 inputs Quinsam River downstream of confluence with Iron River Lower Quinsam Lake Centre Passive Treatment System	NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 7SQR LQL (1, 4, 9 & 1m from Bottom) IR6 IR8 IRQR LQL (1, 4, 9 & 1m from Bottom)	FW F	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118 P-South Area 5 E297231 E297232 E299256 E292118 Long Lake Seep	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre i Mining Operation Iron River upstream of 7SA5 and 242 influence Iron River downstream of 7SA5 and 242 inputs Quinsam River downstream of confluence with Iron River Lower Quinsam Lake Centre D Passive Treatment System Groundwater well (2-South Mine Pool) influent to the Passive Treatment System (PTS)	NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 7SQR LQL (1, 4, 9 & 1m from Bottom) IR6 IR8 IRQR LQL (1, 4, 9 & 1m from Bottom) QU11-11 (INF-EFF)	FW F	
North Coal Mir E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118 7-South Area 5 E297231 E297232 E299256 E292118 Long Lake Seep N/A N/A	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre Mining Operation Iron River upstream of 7SA5 and 242 influence Iron River downstream of 7SA5 and 242 inputs Quinsam River Downstream of confluence with Iron River Lower Quinsam Lake Centre P Passive Treatment System Groundwater well (2-South Mine Pool) influent to the Passive Treatment System (PTS) Biochemical Reactor	NNL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 75QR LQL (1, 4, 9 & 1m from Bottom) IR6 IR8 IRQR LQL (1, 4, 9 & 1m from Bottom) QU11-11 (INF-EFF) BCR-EFF	FW F	
E0126402 E206618 E0900504 South Coal Min E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118 7-South Area 5 E297231 E297232 E299256 E29118 Long Lake Seep N/A N/A N/A	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre i Mining Operation Iron River upstream of 7SA5 and 242 influence Iron River downstream of 7SA5 and 242 inputs Quinsam River downstream of confluence with Iron River Lower Quinsam Lake Centre P Passive Treatment System Groundwater well (2-South Mine Pool) influent to the Passive Treatment System (PTS) Biochemical Reactor Sulphide Polishing Cell	NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 75QR LQL (1, 4, 9 & 1m from Bottom) IR6 IR8 IRQR LQL (1, 4, 9 & 1m from Bottom) QU11-11 (INF-EFF) BCR-EFF SPC-EFF	FW F	
E0126402 E206618 E0900504 South Coal Mir E217018 E217017 E206619 E219412 7-South Mining E286930 E292113 E292118 7-South Area 5 E297231 E297232 E299256 E292118 Long Lake Seep N/A N/A	Receiving Water (Rivers & Lakes Monitoring Sites) 5 in 30 Moning Operation Quinsam River at Argonaut Bridge Middle Quinsam Lake Centre Outflow from Middle Quinsam Lake No Name Lake No Name Lake No Name Lake Outlet Long Lake at Centre Long Lake Outlet g Operation (Areas 1 to 4) Quinsam River Upstream of 7-South Mining Operation Quinsam River Downstream of 7-South Mining Operation Lower Quinsam Lake Centre Mining Operation Iron River upstream of 7SA5 and 242 influence Iron River downstream of 7SA5 and 242 inputs Quinsam River Downstream of confluence with Iron River Lower Quinsam Lake Centre P Passive Treatment System Groundwater well (2-South Mine Pool) influent to the Passive Treatment System (PTS) Biochemical Reactor	NNL (1, 4, 9 & 1m from Bottom) WB NNL (1, 4, 9 & 1m from Bottom) NNO LLM (1, 4, 9 & 1m from Bottom) LLO QRDS1 75QR LQL (1, 4, 9 & 1m from Bottom) IR6 IR8 IRQR LQL (1, 4, 9 & 1m from Bottom) QU11-11 (INF-EFF) BCR-EFF	FW F	

Appendix 1 - Tables

Table 2 Summary of Permit Limit Exceedances, Permit Non-Compliances and Unauthorised Discharges 1 Page(s)

Summary of Permit Limit Exceedanc	·				Number of events or period for PNC, P or
EMS ID & Site Name	Non-Compliance (PNC)	Result (mg/L)	Date	Non-Compliance Reason	spill event.
Section 3.10 - Bypasses - Effluent that is discharge without being processed through the authorised works are considered bypasses of authorised works (S, S2A, S2B, LLSM and LLS).	Bypass of Authorized Works	PNC	Q1	See below	See below
E292131 - Long Lake Seep (LLSM)	Bypass of Authorized Works	PNC	April 1 to 12	Mine water bypassing the authorised works (SP1) flowing into Long lake. Water was not reaching the lake or flowing through the H-Flume.	Q1 (12 days)
E292131 - Long Lake Seep (LLS)	Bypass of Authorized Works	PNC	April 1 to 7	Mine water bypassing the authorised works (SP1) flowing into Long lake. Extremely low flow. Water was not reaching the lake during the 2nd week of April.	Q1 (7 days)
Seeps (S and S2A)	Bypass of Authorized Works	PNC	Q1	Potential mine influenced groundwater water, bypassing the authorised works (SP4) flowing into Quinsam River.	Q1 (91 Days)
Seep - S2B	Bypass of Authorized Works	PNC	April 1-15	Potential mine influenced groundwater water bypassing the authorised works (SP4) flowing into Quinsam River.	Q1 (15 Days) estimated
	Missing continuous flow data (average and maximum)		April 1, 3, 5 - 7, 11-13	Equipment malfunction. Flow meter was not recording data due to terminal strip malfunction.	7 days
SP1 -E218582	Incorrect data recorded	PNC	April 11, 14, 17, 18, 23, 24 - 28 and May 30	Equipment malfunction. Inaccurate data recorded. Terminal strip malfunction. Data will be removed from data set.	11 days
	Data augmented with manual readings.		April 8, 16, 22 and 29	Manual readings were recorded.	4 days
	Data augmented with manual readings.		May 21, 27 and 29	Manual readings were recorded.	3 days
SP4 - E207409	Missing continuous flow data (average and maximum)	PNC	May 17 to 29	Flow meter stopped logging data. SD card required reformatting. Manual readings were recorded for three days (May 21, 27 and 29).	13 days

Receiving Environment - Water Quality Guideline Observations									
Criteria Name	Station Code	Sample ID	Bureau Veritas Sample ID	Bureau Veritas Job ID	Parameter	Criteria	Result	DL	Units
WQG - ACUTE	NNL9	NNL9-10APR24-M	CLZ529	C425141	Dissolved Copper (Cu)	0.0005	0.00056	0.0002	mg/L
WQG - ACUTE	NNL9	NNL9-24APR24-M	CMQ241	C429115	Dissolved Copper (Cu)	0.00040	0.00048	0.0002	mg/L
WQG - ACUTE	NNLB	NNLB-10APR24-M	CLZ530	C425141	Dissolved Copper (Cu)	0.00040	0.0005	0.0002	mg/L
WQG - ACUTE	NNLB	NNLB-17APR24-M	CMG956	C427034	Dissolved Copper (Cu)	0.00040	0.0005	0.0002	mg/L
WQG - ACUTE	NNLB	NNLB-24APR24-M	CMQ242	C429115	Dissolved Copper (Cu)	0.00030	0.00049	0.0002	mg/L
WQG - ACUTE	NNLB	NNLB-1MAY24-M	CMY246	C430894	Dissolved Copper (Cu)	0.00040	0.00043	0.0002	mg/L
WQG - ACUTE	NNLB	NNLB-8MAY24-M	CNH380	C432979	Dissolved Copper (Cu)	0.00040	0.00048	0.0002	mg/L
WQG - CHRONIC	NNL4	NNL4-10APR24-M	CLZ528	C425141	Total Aluminum (Al)	0.03800	0.0424	0.003	mg/L
WQG - CHRONIC	NNL9	NNL9-10APR24-M	CLZ529	C425141	Total Aluminum (Al)	0.031	0.0446	0.003	mg/L
WQG - CHRONIC	NNL9	NNL9-17APR24-M	CMG955	C427034	Total Aluminum (Al)	0.031	0.0461	0.003	mg/L
WQG - CHRONIC	NNL9	NNL9-24APR24-M	CMQ241	C429115	Total Aluminum (Al)	0.030	0.0451	0.003	mg/L
WQG - CHRONIC	NNL9	NNL9-1MAY24-M	CMY245	C430894	Total Aluminum (Al)	0.032	0.0417	0.003	mg/L
WQG - CHRONIC	NNL9	NNL9-8MAY24-M	CNH379	C432979	Total Aluminum (Al)	0.035	0.0404	0.003	mg/L
WQG - CHRONIC	NNLB	NNLB-10APR24-M	CLZ530	C425141	Total Aluminum (Al)	0.028	0.0464	0.003	mg/L
WQG - CHRONIC	NNLB	NNLB-17APR24-M	CMG956	C427034	Total Aluminum (Al)	0.028	0.0469	0.003	mg/L
WQG - CHRONIC	NNLB	NNLB-24APR24-M	CMQ242	C429115	Total Aluminum (Al)	0.024	0.0438	0.003	mg/L
WQG - CHRONIC	NNLB	NNLB-1MAY24-M	CMY246	C430894	Total Aluminum (Al)	0.03	0.0457	0.003	mg/L
WQG - CHRONIC	NNLB	NNLB-8MAY24-M	CNH380	C432979	Total Aluminum (Al)	0.027	0.0428	0.003	mg/L
			Seep - Water O	uality Guideli	ne Observations				
WQG - CHRONIC	LLE	Q1 - 5 weeks of rolling	averages		Sulphate (SO4)	128	(150 to 208)	5	mg/L
WQG - CHRONIC	LLS	LLS-2APR24-M	CLQ465	C423250	Sulphate (SO4)	302.6	610	5	mg/L
WQG - CHRONIC	LLSM	LLSM-2APR24-M	CLQ466	C423250	Sulphate (SO4)	302.6	410	5	mg/L
WQG - ACUTE	LLS	LLS-2APR24-M	CLQ465	C423250	Total Iron (Fe)	1	1.22	0.01	mg/L
WQG - CHRONIC	S2A	S2A-3APR24-M	CLR633	C423492	Total Arsenic (As)	0.005	0.0194	0.0001	mg/L
WQG - CHRONIC	S2A	S2A-7MAY24-M	CNF771	C432563	Total Arsenic (As)	0.005	0.0217	0.0001	mg/L
WQG - CHRONIC	S2A	S2A-4JUN24-M	СОТ609	C440898	Total Arsenic (As)	0.005	0.029	0.0001	mg/L
WQG - CHRONIC	S2B	S2B-3APR24-M	CLR634	C423492	Total Arsenic (As)	0.005	0.0292	0.0001	mg/L
WQG - CHRONIC	S	S-3APR24-M	CLR632	C423492	Total Arsenic (As)	0.005	0.062	0.0001	mg/L
WQG - CHRONIC	S	S-7MAY24-M	CNF770	C432563	Total Arsenic (As)	0.005	0.0737	0.0001	mg/L
WQG - CHRONIC	S	S-4JUN24-M	СОТ608	C440898	Total Arsenic (As)	0.005	0.0688	0.0001	mg/L
WQG - CHRONIC	S	S-7MAY24-M	CNF770	C432563	Total Boron (B)	1.2	1.53	0.05	mg/L
WQG - CHRONIC	S	S-4JUN24-M	СОТ608	C440898	Total Boron (B)	1.2	1.36	0.05	mg/L

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
LLM1	LLM1-10APR24-M	0.0005	0.0004		0.0004	0.0003
	LLM1-17APR24-M	0.0004	0.0002	3 out of 5 weekly		
	LLM1-24APR24-M	0.0004	0.0003	samples and average was above Chronic-		
	LLM1-1MAY24-M	0.0004	0.0006	WQG		
	LLM1-8May24-M	0.0004	0.0004			
LLM4	LLM4-10APR24-M	0.0004	0.0004		0.0004	0.0004
	LLM4-17APR24-M	0.0004	0.0002			
	LLM4-17APR24-R	0.0004	0.0002	3 out of 6 weekly		
	LLM4-24APR24-M	0.0004	0.0004	samples		
	LLM4-1MAY24-M	0.0004	0.0006			
	LLM4-8May24-M	0.0004	0.0004			
LLM9	LLM9-10APR24-M	0.0004	0.0004		0.00045	0.0003
	LLM9-17APR24-M	0.0004	0.0002	4 out of 5 results and		
	LLM9-24APR24-M	0.0004	0.0003	average was above Chronic-WQG		
	LLM9-1MAY24-M	0.0006	0.0004	Cili Offic-WQG		
	LLM9-8May24-M	0.0004	0.0003			

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
LLMB	LLMB-10APR24-M	0.0004	0.0003	_	0.00043	0.0002
	LLMB-17APR24-M	0.0004	0.0002	- 5 out of 5 results and		
	LLMB-24APR24-M	0.0006	0.0002	average was above Chronic-WQG		
	LLMB-1MAY24-M	0.0004	0.0003	-		
	LLMB-8May24-M	0.0004	0.0002			
LLEZ2	LLEZ2-10APR24-M	0.0007	0.0005		0.00046	0.0003
	LLEZ2-17APR24-M	0.0004	0.0002	- 3 out of 5 results and		
	LLEZ2-24APR24-M	LLEZ2-24APR24-M 0.0004		average was above Chronic-WQG		
	LLEZ2-1MAY24-M	0.0004	0.0006	Cinonic waa		
	LLEZ2-8MAY24-M	0.0004	0.0004			

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
LQL1	LQL1-10APR24-M	0.0006	0.0007		0.00056	0.0006
	LQL1-17APR24-M	0.0006	0.0006			
	LQL1-25APR24-M	0.0006	0.0006	- 0 out of 6 results		
	LQL1-25APR24-R	0.0006	0.0006	o out of o results		
	LQL1-2MAY24-M	0.0005	0.0007			
	LQL1-8MAY24-M	0.0006	0.0006			
LQL4	LQL4-10APR24-M	0.0005	0.0006		0.00054	0.0006
	LQL4-17APR24-M	0.0006	0.0006			
	LQL4-25APR24-M	0.0005	0.0006	1 out of 5 results		
	LQL4-2MAY24-M	0.0005	0.0006			
	LQL4-8MAY24-M	0.0006	0.0005			

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
LQL9	LQL9-10APR24-M	0.0005	0.0006		0.00056	0.0005
	LQL9-17APR24-M	0.0006	0.0006	- 2 out of 5 results and		
	LQL9-25APR24-M	0.0006	0.0005	average was above Chronic-WQG		
	LQL9-2MAY24-M	0.0005	0.0006	- Simoline WQS		
	LQL9-8MAY24-M	0.0005	0.0005			
LQLB	LQLB-10APR24-M	0.0006	0.0005		0.00056	0.0004
	LQLB-17APR24-M	0.0005	0.0004	- 5 out of 5 results and		
	LQLB-25APR24-M	0.0006	0.0004	average was above Chronic-WQG		
	LQLB-2MAY24-M	0.0006	0.0004	_		
	LQLB-8MAY24-M	0.0005	0.0003			
MQL1	MQL1-10APR24-M	0.0005	0.0004		0.00054	0.0004
	MQL1-17APR24-M	0.0005	0.0004			
	MQL1-24APR24-M	0.0006	0.0004	6 out of 6 results and average was above		
	MQL1-24APR24-R	0.0006	0.0005	Chronic-WQG		
	MQL1-1MAY24-M	0.0005	0.0005			
	MQL1-8May24-M	0.0006	0.0004			

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
MQL4	MQL4-10APR24-M	0.0005	0.0005		0.00054	0.0005
	MQL4-17APR24-M	0.0005	0.0004			
	MQL4-24APR24-M	0.0006	0.0004	5 out of 6 results and average was above		
	MQL4-1MAY24-M	0.0005	0.0005	Chronic-WQG		
	MQL4-1MAY24-R	0.0005	0.0006			
	MQL4-8May24-M	0.0006	0.0004			
MQL9	MQL9-10APR24-M	0.0005	0.0005		0.00051	0.0005
	MQL9-17APR24-M	0.0006	0.0005	3 out of 5 results and		
	MQL9-24APR24-M	0.0005	0.0004	average was above Chronic-WQG		
	MQL9-1MAY24-M	0.0005	0.0006	- Cilionic Wqs		
	MQL9-8May24-M	0.0005	0.0004			
MQLB	MQLB-10APR24-M	0.0005	0.0004		0.00052	0.0004
	MQLB-17APR24-M	0.0005	0.0003	5 out of 5 results and		
	MQLB-24APR24-M	0.0006	0.0004	average was above Chronic-WQG		
	MQLB-1MAY24-M	0.0005	0.0004	Sinoine WQO		
	MQLB-8May24-M	0.0005	0.0004			

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
NNL1						
	NNL1-10APR24-M	0.0005	0.0002	-	0.00046	0.0003
	NNL1-10APR24-R	0.0005	0.0002			
	NNL1-17APR24-M	0.0005	0.0002	- 5 out of 7 results and		
	NNL1-24APR24-M	0.0004	0.0002	average was above Chronic-WQG		
	NNL1-1MAY24-M	0.0004	0.0003			
	NNL1-8MAY24-M	0.0005	0.0006	_		
	NNL1-8MAY24-R	0.0005	0.0005			
NNL4	NNL4-10APR24-M	0.0005	0.0002		0.00047	0.0002
	NNL4-17APR24-M	0.0006	0.0002	- 5 out of 5 results and		
	NNL4-24APR24-M	0.0005	0.0002	average was above Chronic-WQG		
	NNL4-1MAY24-M	0.0004	0.0002	Cirionic wad		
	NNL4-8MAY24-M	0.0004	0.0003			

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
NNL9	NNL9-10APR24-M	0.0006	0.0002		0.00048	0.0002
	NNL9-17APR24-M	0.0005	0.0002	5 out of 5 results and		
	NNL9-24APR24-M	0.0005	0.0005 0.0002			
	NNL9-1MAY24-M	0.0004	0.0002	- Chronic-WQG		
	NNL9-8MAY24-M	0.0005 0.0002				
NNLB	NNLB-10APR24-M	0.0005	0.0002		0.00048	0.0002
	NNLB-17APR24-M	0.0005	0.0002	5 out of 5 results.		
	NNLB-24APR24-M	0.0005	0.0002	Average was above Chronic-WQG		
	NNLB-1MAY24-M	0.0004	0.0002	chrome was		
	NNLB-8MAY24-M	0.0005	0.0002			
QR Upstream	WA-28MAR24-M	0.0006	0.0007		0.00047	0.0005
	WA-3APR24-M	0.0006	0.0005			
	WA-3APR24-R	0.0006	0.0006	2 out of 6 results.		
	WA-8APR24-M	0.0006	0.0007	2 out of o results.		
	WA-15APR24-M	0.0006	0.0007			
	WA-22APR24-M	0.0006 0.0005				

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
MQL Outlet	WB-28MAR24-M	0.0005	0.0006		0.00053	0.0006
	WB-28MAR24-R	0.0005	0.0006			
	WB-3APR24-M	0.0005	0.0005	- 1 out of 6 results.		
	WB-8APR24-M	0.0005	0.0007	-		
	WB-15APR24-M	0.0005	0.0006			
	WB-22APR24-M	0.0006	0.0007			
LL Outlet	LLO-28MAR24-M	0.0004	0.0006		0.00042	0.0008
	LLO-3APR24-M	0.0004	0.0005			
	LLO-8APR24-M	0.0004	0.0011	0 out of 6 results.		
	LLO-15APR24-M	0.0004	0.0008	-		
	LLO-22APR24-M	0.0004	0.0009			
	LLO-22APR24-R	0.0004	0.001			
NNL Outlet	NNO-28MAR24-M	0.0005	0.0003		0.00047	0.0005
	NNO-3APR24-M	0.0005	0.0004			
	NNO-8APR24-M	0.0005	0.0006	2 out of 5 results.		
	NNO-15APR24-M	0.0005	0.0006			
	NNO-22APR24-M	0.0005	0.0006			

Table 4 Results Above Freshwater Aquatic Life Dissolved Copper Guideline 9 Page(s)

Site Name	Sample Number	Cu-D mg/L	Chronic - WQG	Count of Results Above Chronic - WQG	5 in 30 Average Cu-D	5 in 30 Average Chronic - WQG (mg/L)
QRDS1	QRDS1-28MAR24-M	0.0005	0.0007		0.00053	0.0008
	QRDS1-3APR24-M	0.0005	0.0006			
	QRDS1-8APR24-M	0.0005	0.0008			
	QRDS1-15APR24-M	0.0006	0.001	0 out of 7 results.		
	QRDS1-15APR24-R	0.0005	0.0009			
	QRDS1-22APR24-M	0.0005	0.001			
	QRDS1-22MAY24-X	0.0005	0.001			
7SQR	7SQR-28MAR24-M	0.0005	0.0004		0.00053	0.0006
	7SQR-3APR24-M	0.0005	0.0005			
	7SQR-8APR24-M	0.0005	0.0007	3 out of 6 results.		
	7SQR-15APR24-M	0.0005	0.0004	5 out of 6 results.		
	7SQR-22APR24-M	0.0005	0.0006			
	7SQR-22MAY24-X	0.0006	0.0006			
IRQR	IRQR-28MAR24-M	0.0006	0.0007		0.00055	0.0006
	IRQR-3APR24-M	0.0006	0.0008			
	IRQR-8APR24-M	0.0005 0.0007		1 out of 5 results.		
	IRQR-15APR24-M 0.0006 0.0005					
	IRQR-22APR24-M	0.0005	0.0006			

Appendix 1 - Tables

Table 5 Contaminated Sites Regulations - Aquatic Life Standards 2 Page(s)

Criteria Name	Sample Number	Site Name	Date	Replicate	Bureau Veritas Sample ID	Bureau Veritas Job ID	Parameter	Criteria	Result	DL	Units
BC CSR Aquatic Life - LOW	S-3APR24-M	S	03-Apr-24		CLR632	C423492	Dissolved Arsenic (As)	0.05	0.0676	0.0001	mg/L
BC CSR Aquatic Life - LOW	QU1109S-9APR24-M	QU1109S	09-Apr-24		CLZ497	C425136	Dissolved Arsenic (As)	0.05	0.102	0.0001	mg/L
BC CSR Aquatic Life - LOW	QU0813A-16APR24-M	QU0813A	16-Apr-24		CMG939	C427029 Dissolved Arsenic (As)		0.05	0.344	0.0001	mg/L
BC CSR Aquatic Life - LOW	QU0813B-16APR24-M	QU0813B	16-Apr-24		CMG940	C427029	Dissolved Arsenic (As)	0.05	0.55	0.0001	mg/L
BC CSR Aquatic Life - LOW	7SA5-23APR24-M	7SA5	23-Apr-24		CMQ146	C429118	Dissolved Arsenic (As)	0.05	0.107	0.0001	mg/L
BC CSR Aquatic Life - LOW	S-7MAY24-M	S	07-May-24		CNF770	C432563	Dissolved Arsenic (As)	0.05	0.0762	0.0001	mg/L
BC CSR Aquatic Life - LOW	242MW-13MAY24-M	242MW	13-May-24		CNM849	C434112	Dissolved Arsenic (As)	0.05	0.0934	0.0001	mg/L
BC CSR Aquatic Life - LOW	QU0813A-14MAY24-M QU0813A 14-May-24 CNO963 C434624 Dissolved Arsenic (As)		Dissolved Arsenic (As)	0.05	0.356	0.0001	mg/L				
BC CSR Aquatic Life - LOW	QU0813B-14MAY24-M	QU0813B	14-May-24		CNO964	C434624	Dissolved Arsenic (As)	0.05	0.581	0.0001	mg/L
BC CSR Aquatic Life - LOW	QU1410-14MAY24-M	QU1410	14-May-24		CNO965	C434624	Dissolved Arsenic (As)	0.05	0.0961	0.0005	mg/L
BC CSR Aquatic Life - LOW	QU1410-14MAY24-R	QU1410	14-May-24	R	CNO966	C434624	Dissolved Arsenic (As)	0.05	0.0952	0.0005	mg/L
BC CSR Aquatic Life - LOW	QU1105S-15MAY24-M	QU1105S	15-May-24		CNV254	C435900	Dissolved Arsenic (As)	0.05	0.0573	0.0001	mg/L
BC CSR Aquatic Life - LOW	S-4JUN24-M	S	04-Jun-24		СОТ608	C440898	Dissolved Arsenic (As)	0.05	0.0767	0.0002	mg/L
BC CSR Aquatic Life - LOW	QU0821GD-5JUN24-M	QU0821GD	05-Jun-24		COV295	C441289	Dissolved Arsenic (As)	0.05	0.222	0.0005	mg/L
BC CSR Aquatic Life - LOW	QU0821GS-5JUN24-M	QU0821GS	05-Jun-24		COV296	C441289	Dissolved Arsenic (As)	0.05	0.207	0.0002	mg/L
BC CSR Aquatic Life - LOW	QU1410-17JUN24-M	QU1410	17-Jun-24		CPQ523	C445235	Dissolved Arsenic (As)	0.05	0.077	0.0005	mg/L
BC CSR Aquatic Life - LOW	QU0813A-24JUN24-M	QU0813A	24-Jun-24		CQC097	C447359	Dissolved Arsenic (As)	0.05	0.317	0.0001	mg/L
BC CSR Aquatic Life - LOW	QU0813B-25JUN24-M	QU0813B	25-Jun-24		CQC098	C447359	Dissolved Arsenic (As)	0.05	0.55	0.0001	mg/L
BC CSR Aquatic Life - LOW	3M7S-23MAY24-M	3M7S	23-May-24		COA327	C437055	Dissolved Cadmium (Cd)	0.0005	0.000815	0.00002	mg/L
BC CSR Aquatic Life - LOW	QU1105D-15MAY24-M	QU1105D	15-May-24		CNV255	C435900	Dissolved Selenium (Se)	0.02	0.0748	0.0005	mg/L
BC CSR Aquatic Life - LOW	QU1410-14MAY24-M	QU1410	14-May-24		CNO965	C434624	Sulphate (SO4)	1280	1800	25	mg/L
BC CSR Aquatic Life - LOW	QU1410-14MAY24-R	QU1410	14-May-24	R	CNO966	C434624	Sulphate (SO4)	1280	1800	25	mg/L
BC CSR Aquatic Life - LOW	QU1410-17JUN24-M	QU1410	17-Jun-24		CPQ523	C445235	Sulphate (SO4)	1280	1900	25	mg/L
BC CSR Aquatic Life - LOW	QU1109M-9APR24-M	19M-9APR24-M QU1109M 09-Apr-24 CLZ496 C425136 Sulphide (as H2S)		Sulphide (as H2S)	0.02	0.031	0.002	mg/L			

Table 5 Contaminated Sites Regulations - Aquatic Life Standards 2 Page(s)

Criteria Name	Sample Number	Site Name	Date	Replicate	Bureau Veritas Sample ID	Bureau Veritas Job ID	Parameter	Criteria	Result	DL	Units
BC CSR Aquatic Life - LOW	S-3APR24-M	S	03-Apr-24		CLR632	C423492	Dissolved Arsenic (As)	0.05	0.0676	0.0001	mg/L
BC CSR Aquatic Life - LOW	QU1109S-9APR24-M	QU1109S	09-Apr-24		CLZ497	C425136	Sulphide (as H2S)	0.02	1.5	0.019	mg/L
BC CSR Aquatic Life - LOW	QU0813A-16APR24-M	QU0813A	16-Apr-24		CMG939	C427029	Sulphide (as H2S)	0.02	0.18	0.002	mg/L
BC CSR Aquatic Life - LOW QU0813B-16APR24-M QU08		QU0813B	16-Apr-24		CMG940	C427029	Sulphide (as H2S)	0.02	0.022	0.002	mg/L
BC CSR Aquatic Life - LOW	1M2N-16APR24-M	1M2N	16-Apr-24		CMG942	C427031	Sulphide (as H2S)	0.02	0.094	0.002	mg/L
BC CSR Aquatic Life - LOW	5M#2-16APR24-M	5M#2	16-Apr-24		CMG943	C427031	Sulphide (as H2S)	0.02	0.023	0.002	mg/L
BC CSR Aquatic Life - LOW	INF-6MAY24-M	INF	06-May-24		CNE080	C432138	Sulphide (as H2S)	0.02	0.026	0.002	mg/L
BC CSR Aquatic Life - LOW	1M2N-7MAY24-M	1M2N	07-May-24		CNF766	C432560	Sulphide (as H2S)	0.02	0.079	0.002	mg/L
BC CSR Aquatic Life - LOW	QU1105S-15MAY24-M	QU1105S	15-May-24		CNV254	C435900	Sulphide (as H2S)	0.02	0.19	0.002	mg/L
BC CSR Aquatic Life - LOW	QU1105D-15MAY24-M	QU1105D	15-May-24		CNV255	C435900	Sulphide (as H2S)	0.02	20	0.38	mg/L
BC CSR Aquatic Life - LOW	QU1013D-28MAY24-M	QU1013D	28-May-24		COJ257	C438830	Sulphide (as H2S)	0.02	0.054	0.002	mg/L
BC CSR Aquatic Life - LOW	1M2N-4JUN24-M	1M2N	04-Jun-24		СОТ307	C440846	Sulphide (as H2S)	0.02	0.049	0.002	mg/L
BC CSR Aquatic Life - LOW	QU0821GD-5JUN24-M	QU0821GD	05-Jun-24		COV295	C441289	Sulphide (as H2S)	0.02	0.066	0.002	mg/L
BC CSR Aquatic Life - LOW	QU0821GS-5JUN24-M	QU0821GS	05-Jun-24		COV296	C441289	Sulphide (as H2S)	0.02	0.12	0.002	mg/L
BC CSR Aquatic Life - LOW	QU0813A-24JUN24-M	QU0813A	24-Jun-24		CQC097	C447359	Sulphide (as H2S)	0.02	0.24	0.002	mg/L

Table 6 Settling Pond # 4 - Authorized Discharge Location for North Mine Water 1 Page(s)

EMS ID	E207409	Stn Std	PL-N																
Site Descriptio	. Cattling D	and #4	Anth	orized Die	ohorgo I.	postion fo	w Month N	Aina Wate	o.w										
Site Name	WD	Std Val																	
Date		Max	Min	02-04-2024						13-05-2024		27-05-2024		03-06-2024		05-06-2024	17-06-2024	24-06-2024	25-06-2024
Wlevel	m 	0.5	_	0.1	0.153	0.101	0.139	0.096	0.145	0.144	0.095	0.131	0.164	0.114	0.131	0.121	0.121	0.083	0.077
pH-F Cond-F	pH Units uS/cm	8.5	6	7.56 1701	7.71 1764	7.47 1517	7.76 156.8	7.75 1595	7.53 1627	7.63 1708	7.62 1484	7.65 1489		7.58			7.66 1665	7.57 1559	
SO4-D	mg/L			420	420	380	410	410	400	400	350	370		390			400	320	
TSS	mg/L	25		<1.0	1.2	1.2	<1.0	4.4	6.4	3.2	<1.0	1.2		3.2			1.6	2.8	
Alk-T	mg/L			440					350					350					
Acidity83	mg/L			<1.0					<1.0					1.7					
Al-T	mg/L								0.0032										
As-T	mg/L								0.00135										
Ва-Т	mg/L								0.0189										
В-Т	mg/L								0.731										
Cd-T	mg/L								<0.000010										
Ca-T	mg/L								95.6										
Cr-T	mg/L								< 0.0010										
Со-Т	mg/L								<0.00020										
Cu-T	mg/L								<0.00050										
Hard-T	mg/L								285										
Fe-T	mg/L								0.421										
Pb-T	mg/L								<0.00020										
Mg-T	mg/L								11.3										
Mn-T	mg/L								0.0685										
Мо-Т	mg/L								<0.0010										
Ni-T	mg/L								<0.0010										
K-T	mg/L								2.95										
S-T	mg/L								127										
Se-T	mg/L								<0.00010										
Si-T	mg/L								2.41										
Ag-T	mg/L								<0.000020										
Na-T Sr-T	mg/L mg/L								209 0.916										
Zn-T	mg/L mg/L								<0.0050										
Al-D	mg/L	0.5		< 0.015					<0.0030					< 0.0030					
As-D	mg/L	0.5		0.00123					0.00103					0.00087					
Ba-D	mg/L			0.0227					0.0217					0.0215					
B-D	mg/L			0.88					0.859					0.906					
Be-D	mg/L			<0.00050					<0.00010					<0.00010					
Cd-D	mg/L			<0.000050					<0.000010					<0.000010					
Ca-D	mg/L			124					110					117					
Cr-D	mg/L			< 0.0050					< 0.0010					< 0.0010					
Co-D	mg/L			< 0.0010					<0.00020					<0.00020					
Cu-D	mg/L	0.02		< 0.0010					0.00022					<0.00020					
Hard-D	mg/L			364					330					344					
Fe-D	mg/L	0.3		< 0.025					0.0291					0.0291					
Pb-D	mg/L	0.05		< 0.0010					<0.00020					<0.00020					
Mg-D	mg/L			13.3					13.2					12.5					
Mn-D	mg/L			0.131					0.0808					0.0735					
Mo-D	mg/L	-		<0.0050					< 0.0010					<0.0010					
Ni-D	mg/L	-		<0.0050					< 0.0010					<0.0010					
K-D	mg/L		_	3.59					3.46					3.46					
S-D	mg/L			151					148					149					
Se-D	mg/L	-		<0.00050					<0.00010					<0.00010					
Si-D	mg/L	-		2.95					2.90					2.87					
Na-D	mg/L		-	260					244					251					
Sr-D	mg/L		-	1.04					1.06					1.18					
Zn-D	mg/L	0.1		< 0.025					<0.0050					<0.0050					
O&G	mg/L	10		<1.0										<1.0					

Table 7 2 North Pit Sump CCR Water Cover 1 Page(s)

EMS ID	E207412			
Site Description Site Name	2 North Pit WP	Sump CCR	Water Cove	er
Date	1	02-04-2024	06-05-2024	03-06-2024
pH-F	pH Units	7.97	7.95	7.97
Cond-F	uS/cm	1494	1549	1573
SO4-D	mg/L	490	460	450
TSS	mg/L	1.6	3.6	1.6
Alk-T	mg/L	260	320	350
Acidity83	mg/L	<1.0	<1.0	<1.0
Al-T	mg/L	0.0156	0.0080	0.0044
As-T	mg/L	0.00073	0.00079	0.00110
Ва-Т	mg/L	0.0121	0.0136	0.0158
В-Т	mg/L	0.526	0.688	0.780
Cd-T	mg/L	<0.000010	<0.000010	<0.000010
Ca-T	mg/L	112	97.9	101
Cr-T	mg/L	< 0.0010	< 0.0010	< 0.0010
Со-Т	mg/L	< 0.00020	< 0.00020	< 0.00020
Cu-T	mg/L	< 0.00050	< 0.00050	< 0.00050
Hard-T	mg/L	344	304	312
Fe-T	mg/L	0.255	0.271	0.377
Pb-T	mg/L	< 0.00020	< 0.00020	< 0.00020
Mg-T	mg/L	15.9	14.6	14.5
Mn-T	mg/L	0.0269	0.0364	0.0594
Мо-Т	mg/L	< 0.0010	< 0.0010	< 0.0010
Ni-T	mg/L	0.0015	< 0.0010	< 0.0010
K-T	mg/L	2.38	2.94	3.46
S-T	mg/L	154	147	162
Se-T	mg/L	< 0.00010	< 0.00010	< 0.00010
Si-T	mg/L	2.06	2.03	2.14
Ag-T	mg/L	<0.000020	<0.000020	<0.000020
Na-T	mg/L	139	175	219
Sr-T	mg/L	0.918	0.915	1.07
Zn-T	mg/L	< 0.0050	< 0.0050	< 0.0050
Al-D	mg/L	< 0.015	< 0.0030	< 0.0030
As-D	mg/L	< 0.00050	0.00050	0.00073
Ba-D	mg/L	0.0135	0.0156	0.0166
B-D	mg/L	0.61	0.792	0.844
Be-D	mg/L	< 0.00050	< 0.00010	< 0.00010
Cd-D	mg/L	<0.000050	<0.000010	<0.000010
Ca-D	mg/L	131	110	115
Cr-D	mg/L	< 0.0050	< 0.0010	< 0.0010
Co-D	mg/L	< 0.0010	<0.00020	<0.00020
Cu-D	mg/L	<0.0010	0.00034	0.00034
Hard-D	mg/L	400	345	350
Fe-D	mg/L	<0.025	0.0145	0.0700
Pb-D	mg/L	< 0.0010	<0.00020	<0.00020
Mg-D	mg/L	17.8	16.7	15.2
Mn-D	mg/L	0.0239	0.0351	0.0498
Mo-D	mg/L	<0.0050	<0.0010	<0.0010
Ni-D	mg/L	<0.0050	<0.0010	<0.0010
K-D		2.64	3.35	3.68
	mg/L			
S-D	mg/L	156	168	175
Se-D	mg/L	<0.00050	<0.00010	<0.00010
Si-D	mg/L	2.06	2.40	2.37
Na-D	mg/L	160	205	238
Sr-D	mg/L	0.920	1.05	1.18
Zn-D	mg/L	< 0.025	< 0.0050	< 0.0050

Table 8 2-North Portal Sump Effluent 1 Page(s)

EMS ID	E283433			
Site Description		Portal Sump	Effluent	
Site Name	2NPS			
Date	****	02-04-2024	06-05-2024	03-06-2024
pH-F	pH Units	7.4	7.32	7.61
Cond-F	uS/cm	2190	2100	2010
SO4-D	mg/L	880	870	870
Alk-T	mg/L	300	300	300
Acidity83	mg/L	2.2	7.8	4.6
Al-T	mg/L	0.0469	0.0217	0.0144
As-T	mg/L	0.00057	0.00044	0.00048
Ba-T	mg/L	0.0107	0.0112	0.0102
В-Т	mg/L	0.689	0.742	0.741
Cd-T	mg/L	<0.000010	<0.000010	<0.000010
Ca-T	mg/L	241	223	219
Cr-T	mg/L	< 0.0010	< 0.0010	< 0.0010
Co-T	mg/L	0.00137	0.00090	0.00056
Cu-T	mg/L	0.00058	< 0.00050	< 0.00050
Hard-T	mg/L	716	671	647
Fe-T	mg/L	0.197	0.164	0.177
Pb-T	mg/L	< 0.00020	< 0.00020	< 0.00020
Mg-T	mg/L	27.5	27.7	24.5
Mn-T	mg/L	0.188	0.153	0.109
Mo-T	mg/L	< 0.0010	< 0.0010	< 0.0010
Ni-T	mg/L	0.0036	0.0026	0.0021
K-T	mg/L	3.41	3.38	3.27
S-T	mg/L	316	286	272
Se-T	mg/L	< 0.00010	< 0.00010	0.00010
Si-T	mg/L	2.82	2.84	2.62
Ag-T	mg/L	<0.000020	<0.000020	< 0.000020
Na-T	mg/L	169	177	168
Sr-T	mg/L	1.86	1.72	1.73
Zn-T	mg/L	< 0.0050	< 0.0050	< 0.0050
Al-D	mg/L	0.015	0.0101	0.0096
As-D	mg/L	<0.00050	0.00030	0.00031
Ba-D	mg/L	0.0132	0.0122	0.0109
B-D	mg/L	0.81	0.82	0.86
Be-D	mg/L	<0.00050	<0.00020	<0.00020
Cd-D	mg/L	<0.00050	<0.00020	<0.00020
Ca-D Cr-D	mg/L mg/L	<0.0050	<0.0020	<0.0020
Co-D		0.0030	0.00102	0.0020
	mg/L		<0.00102	<0.00040
Cu-D Hard D	mg/L	<0.0010		738
Hard-D	mg/L	955	683	
Fe-D	mg/L	<0.025	0.025	0.013
Pb-D	mg/L	<0.0010	<0.00040	<0.00040
Mg-D	mg/L	32.3	28.0	27.3
Mn-D	mg/L	0.227	0.174	0.118
Mo-D	mg/L	<0.0050	<0.0020	<0.0020
Ni-D	mg/L	<0.0050	0.0029	0.0022
K-D	mg/L	4.02	3.48	3.61
S-D	mg/L	327	283	301
Se-D	mg/L	<0.00050	<0.00020	<0.00020
Si-D	mg/L	3.25	3.01	2.96
Na-D	mg/L	208	181	200
Sr-D	mg/L	1.96	1.74	1.90
Zn-D	mg/L	< 0.025	< 0.010	< 0.010

Page 19

Table 9 Road Side Ditch Draining into MQL 1 Page(s)

EMS ID Site Description	Road Sid	N/A e Ditch Dra	ining into M	IOL	
Site Name	PDSR		8	· · ·	
Date	I	02-04-2024	06-05-2024	06-05-2024	03-06-2024
pH-F	pH Units	8.2	7.14	7.14	7.54
Cond-F	uS/cm	1254	1448	1448	1530
SO4-D	mg/L	500	620	620	720
TSS	mg/L	<1.0	1.6	1.2	<1.0
Al-T	mg/L	0.0122	0.0073	0.0074	0.0061
As-T	mg/L	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Ba-T	mg/L	0.0155	0.0186	0.0185	0.0233
В-Т	mg/L	0.210	0.252	0.268	0.334
Cd-T	mg/L	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Ca-T	mg/L	174	202	202	221
Cr-T	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Со-Т	mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Cu-T	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Hard-T	mg/L	551	649	648	702
Fe-T	mg/L	< 0.010	< 0.010	< 0.010	< 0.010
Pb-T	mg/L	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Mg-T	mg/L	28.3	35.2	34.8	36.7
Mn-T	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Mo-T	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Ni-T	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010
K-T	mg/L	1.14	1.34	1.38	1.64
S-T	mg/L	167	200	195	221
Se-T		<0.00010	<0.00010	<0.00010	0.00010
	mg/L				
Si-T	mg/L	3.20 <0.000020	<0.000020	<0.000020	<0.000020
Ag-T	mg/L				
Na-T	mg/L	32.9	37.7	37.7	41.2
Sr-T	mg/L	1.05	1.25	1.23	1.52
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050
Al-D	mg/L	< 0.015	0.0065	0.0073	0.0083
As-D	mg/L	<0.00050	<0.00010	<0.00010	<0.00020
Ba-D	mg/L	0.0164	0.0212	0.0212	0.0273
B-D	mg/L	< 0.25	0.290	0.303	0.41
Be-D	mg/L	<0.00050	<0.00010	<0.00010	<0.00020
Cd-D	mg/L	<0.000050	<0.000010	<0.000010	<0.000020
Ca-D	mg/L	192	221	226	280
Cr-D	mg/L	< 0.0050	< 0.0010	< 0.0010	< 0.0020
Co-D	mg/L	< 0.0010	<0.00020	<0.00020	< 0.00040
Cu-D	mg/L	< 0.0010	0.00037	0.00037	0.00053
Hard-D	mg/L	600	703	721	884
Fe-D	mg/L	< 0.025	< 0.0050	< 0.0050	< 0.010
Pb-D	mg/L	< 0.0010	< 0.00020	< 0.00020	< 0.00040
Mg-D	mg/L	29.4	37.0	38.1	44.7
Mn-D	mg/L	< 0.0050	< 0.0010	< 0.0010	< 0.0020
Mo-D	mg/L	< 0.0050	< 0.0010	< 0.0010	< 0.0020
Ni-D	mg/L	< 0.0050	< 0.0010	< 0.0010	< 0.0020
K-D	mg/L	1.14	1.49	1.51	1.85
S-D	mg/L	156	213	213	267
Se-D	mg/L	< 0.00050	< 0.00010	< 0.00010	< 0.00020
Si-D	mg/L	3.00	3.63	3.71	4.13
Na-D	mg/L	35.5	41.3	40.9	53.6
Sr-D	mg/L	1.01	1.36	1.39	1.80
Zn-D	mg/L	< 0.025	< 0.0050	< 0.0050	< 0.010

Table 10 Culvert at Middle Quinsam Lake Road 1 Page(s)

EMS ID	E207411				
Site Description	Culvert	at Middle (Quinsam L	ake Road	
Site Name Date	WC	02-04-2024	02-04-2024	06-05-2024	03-06-2024
pH-F	pH Units	8.2	8.2	8.08	8.22
Cond-F	uS/cm	1393	1393	1512	1460
SO4-D	mg/L	380	380	380	360
TSS	mg/L	<1.0	2.0	3.6	<1.0
Al-T	mg/L			0.0045	
As-T	mg/L			0.00051	
Ba-T	mg/L			0.0154	
В-Т	mg/L			0.747	
Cd-T	mg/L			< 0.000010	
Ca-T	mg/L			81.0	
Cr-T	mg/L			< 0.0010	
Co-T	mg/L			< 0.00020	
Cu-T	mg/L			< 0.00050	
Hard-T	mg/L			247	
Fe-T	mg/L			0.093	
Pb-T	mg/L			< 0.00020	
Mg-T	mg/L			10.9	
Mn-T	mg/L			0.0058	
Мо-Т	mg/L			< 0.0010	
Ni-T	mg/L			< 0.0010	
K-T	mg/L			2.83	
S-T	mg/L			122	
Se-T	mg/L			< 0.00010	
Si-T	mg/L			2.38	
Ag-T	mg/L			<0.000020	
Na-T	mg/L			204	
Sr-T	mg/L			0.857	
Zn-T	mg/L			<0.0050	
Al-D	mg/L			< 0.0030	
As-D	mg/L			0.00048	
Ba-D	mg/L			0.0180	
B-D	mg/L			0.866	
Be-D	mg/L			<0.00010	
Cd-D	mg/L			<0.000010	
Ca-D	mg/L			90.9	
Cr-D	mg/L			< 0.0010	
Co-D	mg/L			<0.00020	
Cu-D	mg/L			< 0.00020	
Hard-D	mg/L			279	
Fe-D	mg/L			0.0120	
Pb-D	mg/L			<0.0020	
Mg-D	mg/L			12.6	
Mn-D	mg/L			0.0064	
Mo-D	mg/L			< 0.0010	
Ni-D	mg/L			<0.0010	
K-D	mg/L			3.26	
S-D	mg/L			138	
Se-D	mg/L			<0.00010	
Si-D	mg/L			2.76	
Na-D	mg/L			233	
Sr-D	mg/L			0.978	
Zn-D	mg/L	l		< 0.0050	

Page 21

Table 11 Settling Pond #1 - Authorized Discharge Location for South Mine Water 1 Page(s)

EMS ID	E218582				Stn Std												
Site Description			Sec	tling Pond #	tl - Authori	zod Dicobor	go I postion	for South	Mine Woter								
Site Description	SPD	Std Val	561	ting i onu n	ri - Aumori	zeu Dischai	ge Location	i ioi Soutii i	ville vvater								
Date		Max	Min	02-04-2024	08-04-2024	15-04-2024	22-04-2024	29-04-2024	06-05-2024	13-05-2024	21-05-2024	27-05-2024	03-06-2024	10-06-2024	10-06-2024	17-06-2024	24-06-2024
Wlevel	m	Max	Milli	0.03	08-04-2024	0.023	0.053	0.05	0.023	0.011	0.01	0.02	0.02	0.02	0.02	0.01	0.007
pH-F	pH Units	8.5	6	7.78	7.77	7.7	7.79	7.74	7.3	7.85	7.71	7.78	7.81	7.93	7.93	7.75	7.59
Cond-F	uS/cm			642	752	810	861	906	932	939	771	843	870	1038	1038	996	1073
SO4-D	mg/L			250	300	310	340	350	360	360	360	350	360	400	400	440	450
TSS	mg/L	25		1.6	1.6	<1.0	<1.0	1.2	2.8	<1.0	2.8	1.2	<1.0	<1.0	1.6	1.2	2.4
Alk-T	mg/L			93					110				90				
Acidity83 Al-T	mg/L			<1.0					<1.0 0.0048				1.3				
As-T	mg/L mg/L								0.0048								
Ba-T	mg/L								0.00172								
B-T	mg/L								0.258								
Cd-T	mg/L								0.000011								
Ca-T	mg/L								128								
Cr-T	mg/L								< 0.0010								
Co-T	mg/L								<0.00020								
Cu-T	mg/L								<0.00050								
Hard-T Fe-T	mg/L mg/L								383 0.077								
Pb-T	mg/L mg/L								<0.00020								
Mg-T	mg/L								15.8								
Mn-T	mg/L								0.0454								
Mo-T	mg/L								< 0.0010								
Ni-T	mg/L								< 0.0010								
K-T	mg/L								1.30								
S-T	mg/L								123								
Se-T	mg/L								<0.00010								
Si-T	mg/L								1.24 <0.000020								
Ag-T Na-T	mg/L mg/L								32.2								
Sr-T	mg/L								0.884								
Zn-T	mg/L								< 0.0050								
Al-D	mg/L	0.5		0.019					< 0.0030				< 0.0030				
As-D	mg/L			0.00172					0.00151				0.00165				
Ba-D	mg/L			0.0080					0.0113				0.0117				
B-D	mg/L			< 0.25					0.292				0.260				
Be-D	mg/L			< 0.00050					< 0.00010				< 0.00010				
Cd-D	mg/L			<0.000050					<0.000010				<0.000010 135				
Ca-D Cr-D	mg/L mg/L			100 <0.0050					131 <0.0010				< 0.0010				
Co-D	mg/L			<0.0030					<0.0010				<0.0010				
Cu-D	mg/L	0.02		<0.0010					<0.00020				<0.00020				
Hard-D	mg/L			296					394				412				
Fe-D	mg/L	0.5		0.028					0.0236				0.0546				
Pb-D	mg/L	0.05		< 0.0010		_			< 0.00020				< 0.00020				
Mg-D	mg/L			11.1					16.3				18.0				
Mn-D	mg/L			0.0189					0.0211				0.0363				
Mo-D	mg/L		-	<0.0050					<0.0010				<0.0010				
Ni-D K-D	mg/L			<0.0050 0.97					<0.0010				<0.0010 1.45				
S-D	mg/L mg/L			81					1.39				1.45				
Se-D	mg/L			<0.00050					< 0.00010				0.00012				
Si-D	mg/L			2.20					1.28				0.80				
Na-D	mg/L			24.9					32.7				33.2				
Sr-D	mg/L			0.620					0.935				1.02				
Zn-D	mg/L	0.2		< 0.025					< 0.0050				< 0.0050				
O&G	mg/L	10		<1.0									<1.0				

Table 12 Passive Treatment System (PTS) Influent from 2-S Mine Pool 1 Page(s)

Site Descripti	on							Passive Tre	eatment System	m (PTS) Influ	ent from 2-S M	Tine Pool				
Site Name	INF							1 43511 € 11	atment byste.	m (1 15) mmu	cht Hom 2-5 iv	IIIC I 001				
Date	1111	02-04-2024	08-04-2024	08-04-2024	15-04-2024	22-04-2024	29-04-2024	06-05-2024	13-05-2024	21-05-2024	27-05-2024	27-05-2024	03-06-2024	10-06-2024	17-06-2024	24-06-2024
Flow	m3/s	0.0075	0.0076	0.0076	0.0076	22-04-2024	27-04-2024	00-03-2024	0.0078	0.0078	0.0077	0.0077	0.0076	0.0078	0.0076	24-00-2024
pH-F	pH Units	7.07	6.99	6.99	6.76	6.93	6.78	6.46	7.02	6.89	7.02	7.02	7.08	7.08	7.02	7.06
Cond-F	uS/cm	1450	146.7	146.7	1494	1532	1537	1581	1667	1570	1578	1578	1590	1630	1620	1644
H2S	mg/L	< 0.0020	< 0.0020	<0.0020	<0.0020	0.0073	0.012	0.026	<0.0020	<0.0020	0.0036	< 0.0020	< 0.0020	< 0.0020	< 0.0020	0.040
SO4-D	mg/L	620	610	620	610	590	640	610	640	640	660	670	630	640	670	620
TSS	mg/L	5.6	010	020	010	3,0	0.0	6.4	0.0	0.0	000	0,0	7.2	0.0	0.0	020
Alk-T	mg/L	240						250					250			
Acidity83	mg/L	4.9						10.6					8.5			
Al-T	mg/L	0.0058						< 0.0030					< 0.0030			
As-T	mg/L	0.00243						0.00350					0.00347			
Ba-T	mg/L	0.0181						0.0176					0.0180			
В-Т	mg/L	0.572						0.566					0.606			
Cd-T	mg/L	< 0.000010						< 0.000010					< 0.000010			
Ca-T	mg/L	202						214					215			
Cr-T	mg/L	< 0.0010						< 0.0010		1			< 0.0010			
Co-T	mg/L	0.00068						0.00053		1			0.00057			
Cu-T	mg/L	0.00087						< 0.00050		1			< 0.00050			
Hard-T	mg/L	563						600		1	1	1	601		1	1
Fe-T	mg/L	2.06						4.07		1	1		2.43			
Pb-T	mg/L	< 0.00020						<0.00020		1			<0.00020			
Mg-T	mg/L	14.4						15.9					15.6			
Mn-T	mg/L	0.267						0.321					0.351			
Mo-T	mg/L	< 0.0010						< 0.0010					< 0.0010			
Ni-T	mg/L	0.0012						< 0.0010					< 0.0010			
K-T	mg/L	1.66						1.74					1.83			
S-T	mg/L	207						193					207			
Se-T	mg/L	< 0.00010						< 0.00010					< 0.00010			
Si-T	mg/L	2.72						2.81					2.68			
Ag-T	mg/L	<0.000020						<0.000020					<0.000020			
Na-T	mg/L	87.1						88.6					89.6			
Sr-T	mg/L	1.92						1.90					2.23			
Zn-T	mg/L	< 0.0050						< 0.0050					< 0.0050			
Al-D	mg/L	< 0.015						< 0.0030					< 0.0030			
As-D	mg/L	0.00209						0.00351					0.00361			
Ba-D	mg/L	0.0197						0.0202					0.0190			
B-D	mg/L	0.63						0.700					0.654			
Be-D	mg/L	< 0.00050						< 0.00010					< 0.00010			
Cd-D	mg/L	< 0.000050						< 0.000010					< 0.000010			
Ca-D	mg/L	236		1				225		1	1	1	249		1	1
Cr-D	mg/L	< 0.0050						< 0.0010		1			< 0.0010			
Co-D	mg/L	< 0.0010						0.00060		1	1		0.00059			
Cu-D	mg/L	< 0.0010						<0.00020		1			<0.00020			
Hard-D	mg/L	654						633		1	1		694			
Fe-D	mg/L	2.37						4.47		1	1		2.78			
Pb-D	mg/L	< 0.0010						<0.00020		1	1		<0.00020			
Mg-D	mg/L	15.6		1				17.6		1		1	17.3		1	1
Mn-D	mg/L	0.302		1				0.357		1	1	1	0.374		1	1
Mo-D	mg/L	< 0.0050						< 0.0010		1			< 0.0010			
Ni-D	mg/L	< 0.0050						0.0011		1		1	0.0011		1	1
K-D	mg/L	1.79						1.93		 			1.99			
S-D	mg/L	194		<u> </u>				216		 		<u> </u>	228			
Se-D	mg/L	< 0.00050						0.00058					0.00024			
Si-D	mg/L	2.74		 				3.07		 	1	 	2.99		 	
Na-D	mg/L	97.9						97.2		+	 	1	105		 	
Sr-D	mg/L	1.91		+				2.21		+	+	+	2.43		 	
Zn-D	mg/L	<0.025		1				<0.0050		+	 	1	<0.0050		 	
ムルリ	mg/L	<0.025						<0.0000			1		<0.0030			

Table 13 PTS Biochemical Reactor Cell 1 Page(s)

Site Descripti	on					PassiveTre	atment Syster	n Biochemica	al Reactor Ce	ell				
Site Name	BCR													
Date pH-F	pH Units	02-04-2024	08-04-2024	15-04-2024	22-04-2024	29-04-2024	06-05-2024	7.05	21-05-2024	7.02	7.07	7.02	17-06-2024	24-06-2024
рн-г Cond-F	1	7.15 1355	7.11	6.94 1450	6.97 1453	6.71 1484	6.39 1527	1577	6.87 1495	1512	1528	1606	7.05 1527	7.01 1609
H2S	uS/cm mg/L	1333	12	1430	12	1.1	4.1	20	22	22	20	23	31	27
SO4-D	mg/L	550	600	520	550	600	570	550	620	560	580	590	580	560
TSS	mg/L	<1.0	000	320	330	000	3.2	330	020	300	1.2	390	380	300
Alk-T	mg/L	260					260				280			
Acidity83	mg/L	5.1					13.9				10.3			
Al-T	mg/L	0.0052					0.0062				0.0040			
As-T	mg/L	< 0.00010					0.00011				< 0.00010			
Ba-T	mg/L	0.0224					0.0233				0.0247			
B-T	mg/L	0.594					0.593				0.614			
Cd-T	mg/L	< 0.000010					0.000073				< 0.000010			
Ca-T	mg/L	198					196				212			
Cr-T	mg/L	< 0.0010					< 0.0010				< 0.0010			
Co-T	mg/L	<0.00020					< 0.00020				<0.00020			
Cu-T	mg/L	< 0.00050					< 0.00050				< 0.00050			
Hard-T	mg/L	551					551				590			
Fe-T	mg/L	< 0.010					< 0.010				< 0.010			
Pb-T	mg/L	< 0.00020					< 0.00020				< 0.00020			
Mg-T	mg/L	13.4					14.8				14.6			
Mn-T	mg/L	0.251					0.286				0.237			
Мо-Т	mg/L	< 0.0010					< 0.0010				< 0.0010			
Ni-T	mg/L	< 0.0010					< 0.0010				< 0.0010			
K-T	mg/L	1.71					1.68				1.81			
S-T	mg/L	188					178				190			
Se-T	mg/L	< 0.00010					< 0.00010				0.00010			
Si-T	mg/L	2.86					2.83				2.92			
Ag-T	mg/L	< 0.000020					< 0.000020				< 0.000020			
Na-T	mg/L	88.2					88.0				87.1			
Sr-T	mg/L	1.93					1.92				2.15			
Zn-T	mg/L	< 0.0050					< 0.0050				< 0.0050			
Al-D	mg/L	< 0.015					0.0035				0.0040			
As-D	mg/L	< 0.00050					< 0.00010				< 0.00010			
Ba-D	mg/L	0.0261					0.0264				0.0262			
B-D	mg/L	0.67					0.678				0.718			
Be-D	mg/L	< 0.00050					< 0.00010				< 0.00010			
Cd-D	mg/L	< 0.000050					< 0.000010				< 0.000010			
Ca-D	mg/L	230					219				221			
Cr-D	mg/L	< 0.0050					< 0.0010				< 0.0010		1	
Co-D	mg/L	< 0.0010					< 0.00020				< 0.00020			
Cu-D	mg/L	< 0.0010					< 0.00020				< 0.00020			
Hard-D	mg/L	639					610				618		1	
Fe-D	mg/L	< 0.025					< 0.0050				0.0067			
Pb-D	mg/L	< 0.0010					< 0.00020				< 0.00020			
Mg-D	mg/L	15.6					15.3				16.3			
Mn-D	mg/L	0.288					0.317				0.250			
Mo-D	mg/L	< 0.0050					< 0.0010				< 0.0010			
Ni-D	mg/L	< 0.0050					< 0.0010				< 0.0010		-	
K-D	mg/L	1.93					1.86				1.89		-	
S-D	mg/L	224					340				300		-	
Se-D	mg/L	<0.00050					0.0297				0.0237		-	
Si-D	mg/L	3.84					3.18				3.28		-	
Na-D	mg/L	104					98.0				98.4			
Sr-D	mg/L	2.00					2.17				2.40		1	
Zn-D	mg/L	< 0.025					< 0.0050				< 0.0050			

Table 14 2 South Pit Inflow 1 Page(s)

C:4- D								2 641-	D:4 I61						
Site Description						2 South Pit Inflow									
	2SI														
Date	****	02-04-2024	08-04-2024	15-04-2024	22-04-2024	29-04-2024	06-05-2024	13-05-2024	21-05-2024	27-05-2024	03-06-2024	10-06-2024	17-06-2024	24-06-2024	24-06-2024
pH-F	pH Units	7.44	7.56	7.48	7.57	7.43	6.97	7.81	7.63	7.62	7.71	7.78	7.79	7.78	7.78
Cond-F	uS/cm	244	1131	1207	1275	1189	1279	1471	1385	1206	1289	1411	1458	1550	1550
H2S	mg/L	0.0036	0.036	0.025	0.028	0.0095	0.037	0.052	0.062	0.065	0.0050	0.056	0.11	0.097	0.10
SO4-D	mg/L	180	440	440	480	450	480	540	570	450	490	580	550	570	590
TSS	mg/L	1.2									2.4				
Alk-T	mg/L	76					210				220				
Acidity83	mg/L	<1.0					1.9				2.8				
Al-T	mg/L	0.0467					0.0045				0.0061				
As-T	mg/L	< 0.00010					0.00027				0.00041				
Ba-T	mg/L	0.0037					0.0201				0.0212				
B-T	mg/L	0.076					0.506				0.541				
Cd-T	mg/L	< 0.000010					< 0.000010				< 0.000010				
Ca-T	mg/L	25.0					176				183				
Cr-T	mg/L	< 0.0010					<0.0010				< 0.0010				
		<0.0010					<0.0010				0.00022				
Co-T	mg/L														
Cu-T	mg/L	<0.00050					<0.00050				<0.00050				
Hard-T	mg/L	72.6					497				512				
Fe-T	mg/L	0.116					0.200				0.283				
Pb-T	mg/L	< 0.00020					< 0.00020				< 0.00020				
Mg-T	mg/L	2.49					14.0				13.1				
Mn-T	mg/L	0.0327					0.181				0.267				
Mo-T	mg/L	< 0.0010					< 0.0010				< 0.0010				
Ni-T	mg/L	< 0.0010					< 0.0010				< 0.0010				
K-T	mg/L	0.199					1.46				1.39				
S-T	mg/L	20.6					162				159				
Se-T	mg/L	< 0.00010					< 0.00010				< 0.00010				
Si-T	mg/L	3.55					3.10				3.30				
Ag-T	mg/L	<0.000020					<0.000020				<0.000020				
Na-T	mg/L	8.13					73.6				69.8				
Sr-T		0.184					1.59				1.71				
	mg/L														
Zn-T	mg/L	< 0.0050					< 0.0050				< 0.0050				
Al-D	mg/L	0.028					< 0.0030				< 0.0030				
As-D	mg/L	< 0.00050					0.00026				0.00037				
Ba-D	mg/L	0.0067					0.0212				0.0229				
B-D	mg/L	< 0.25					0.558				0.588				
Be-D	mg/L	< 0.00050					< 0.00010				< 0.00010				
Cd-D	mg/L	< 0.000050					< 0.000010				< 0.000010				
Ca-D	mg/L	54.5	_				179				200				
Cr-D	mg/L	< 0.0050					< 0.0010				< 0.0010				
Co-D	mg/L	< 0.0010					< 0.00020				0.00022				
Cu-D	mg/L	< 0.0010					< 0.00020		1		<0.00020				
Hard-D	mg/L	155		1			505				563				
Fe-D	mg/L	0.071					0.0779				0.0656				
Pb-D	mg/L	< 0.0010					<0.00020		1		<0.00020				
		4.60		1							15.2				
Mg-D	mg/L						14.3							-	
Mn-D	mg/L	0.0532					0.194				0.276				
Mo-D	mg/L	< 0.0050					< 0.0010				< 0.0010				
Ni-D	mg/L	< 0.0050					< 0.0010				< 0.0010				
K-D	mg/L	0.41					1.50				1.59				
S-D	mg/L	44					167				189				
Se-D	mg/L	< 0.00050					0.00019				0.00017				
Si-D	mg/L	3.59					3.37				3.45				
Na-D	mg/L	19.0					73.4				86.3				
Sr-D	mg/L	0.376					1.67				1.97				
Zn-D	mg/L	< 0.025		<u> </u>			< 0.0050		1		< 0.0050				

Table 15 PTS Sulphide Polishing Cell 1 Page(s)

Site Descriptio	on				P	assive Treatm	ent System Sulp	ohide Polishin	g Cell				
Site Name	SPCEFF												
Date		02-04-2024	08-04-2024	15-04-2024	22-04-2024	29-04-2024	06-05-2024	21-05-2024	27-05-2024	03-06-2024	10-06-2024	17-06-2024	24-06-2024
pH-F	pH Units	7.36	7.47	7.59	7.37	7.17	6.9	7.46	7.56	7.66	7.62	7.7	7.62
Cond-F	uS/cm	1498	1384	1357	1440	1464	1472	1365	1368	1316	1381	1376	1428
H2S	mg/L	2.0	0.012	0.016	0.067	0.073	0.0022	0.0032	0.0036	0.0022	< 0.0020	< 0.0020	0.0047
SO4-D	mg/L	520	490	470	510	540	530	500	460	460	470	470	450
TSS	mg/L	2.4					<1.0			1.6			
Alk-T	mg/L	270					270			300			
Acidity83	mg/L	2.8					4.3			3.4			
Al-T	mg/L	0.0098					0.0094			0.0120			
As-T	mg/L	0.00038					0.00086			0.00132			
Ba-T	mg/L	0.0228					0.0224			0.0199			
В-Т	mg/L	0.587					0.574			0.632			
Cd-T	mg/L	< 0.000010					<0.000010			< 0.000010			
Ca-T	mg/L	190					188			183			
Cr-T	mg/L	<0.0010					<0.0010			< 0.0010			
Co-T	mg/L	<0.00020					0.00023			0.00025			
Cu-T	mg/L	<0.00050					0.00055			0.00277			
Hard-T	mg/L	530					530			514			
Fe-T	mg/L	0.177					0.317			0.384			
Pb-T	mg/L	0.00036					<0.00020			<0.00020			
Mg-T	mg/L	13.6 0.198					14.8			13.5			
Mn-T	mg/L						0.0722			0.0313			
Mo-T	mg/L	<0.0010					0.0011 <0.0010			<0.0010 <0.0010			
Ni-T K-T	mg/L	<0.0010					1.63			1.38			
S-T	mg/L mg/L	1.62					1.03			1.38			
Se-T	mg/L	<0.00010					<0.00010			0.00011			
Si-T	mg/L	2.90					2.66			2.21			
Ag-T	mg/L	<0.000020					<0.000020			<0.000020			
Na-T	mg/L	85.4					86.9			84.1			
Sr-T	mg/L	1.86					1.86			2.06			
Zn-T	mg/L	<0.0050					<0.0050			<0.0050			
Al-D	mg/L	< 0.015					0.0057			0.0098			
As-D	mg/L	<0.0050					0.00070			0.00109			
Ba-D	mg/L	0.0251					0.0251			0.0213			
B-D	mg/L	0.64					0.651			0.687			
Be-D	mg/L	<0.00050					<0.00010			< 0.00010			
Cd-D	mg/L	<0.00050					<0.00010			< 0.00010			
Ca-D	mg/L	231					207			210			
Cr-D	mg/L	< 0.0050					< 0.0010			< 0.0010			
Co-D	mg/L	< 0.0010					0.00023			0.00026			
Cu-D	mg/L	< 0.0010					0.00025			0.00135			
Hard-D	mg/L	638					580			587			
Fe-D	mg/L	0.107					0.0735			0.192			
Pb-D	mg/L	< 0.0010					< 0.00020			< 0.00020			
Mg-D	mg/L	14.6					15.6			15.5			
Mn-D	mg/L	0.220					0.0793			0.0342			
Mo-D	mg/L	< 0.0050					< 0.0010			< 0.0010			
Ni-D	mg/L	< 0.0050					< 0.0010			< 0.0010			
K-D	mg/L	1.75					1.73			1.52			
S-D	mg/L	174					186			174			
Se-D	mg/L	< 0.00050					0.00118			< 0.00010			
Si-D	mg/L	2.98					3.01			2.45			
Na-D	mg/L	95.7					93.0			99.9			
Sr-D	mg/L	1.86					2.12			2.25			
Zn-D	mg/L	< 0.025					< 0.0050			< 0.0050			

Table 16 2-South Pit in Pit Water Cover Over PAG-CCR 1 Page(s)

EMS ID	E292127											
Site Description Site Name	2-South Pit in	Pit Water Cover Over Pa	AG-CCR									
Date	23	02-04-2024	06-05-2024	03-06-2024								
oH-F	pH Units	8.13	7.32	8.12								
Cond-F	uS/cm	726	1144	1193								
SO4-D	mg/L	260	430	480								
Alk-T	mg/L	97	150	150								
Acidity83	mg/L	<1.0	1.1	<1.0								
Al-T	mg/L	0.0139	0.0031	< 0.0030								
As-T	mg/L	0.00014	0.00019	0.00022								
Ва-Т	mg/L	0.0100	0.0160	0.0156								
B-T	mg/L	0.246	0.421	0.443								
Cd-T	mg/L	< 0.000010	< 0.000010	< 0.000010								
Ca-T	mg/L	86.2	141	150								
Cr-T	mg/L	< 0.0010	< 0.0010	< 0.0010								
Co-T	mg/L	< 0.00020	< 0.00020	< 0.00020								
Cu-T	mg/L	< 0.00050	< 0.00050	< 0.00050								
Hard-T	mg/L	245	404	426								
Fe-T	mg/L	0.050	0.024	0.033								
Pb-T	mg/L	< 0.00020	< 0.00020	< 0.00020								
Mg-T	mg/L	7.28	12.6	12.4								
Mn-T	mg/L	0.0156	0.0124	0.0154								
Mo-T	mg/L	< 0.0010	< 0.0010	< 0.0010								
Ni-T	mg/L	< 0.0010	< 0.0010	< 0.0010								
K-T	mg/L	0.714	1.29	1.21								
S-T	mg/L	82.2	145	151								
Se-T	mg/L	< 0.00010	< 0.00010	< 0.00010								
Si-T	mg/L	2.66	2.15	2.26								
Ag-T	mg/L	< 0.000020	< 0.000020	< 0.000020								
Na-T	mg/L	35.4	65.6	69.7								
Sr-T	mg/L	0.761	1.35	1.49								
Zn-T	mg/L	< 0.0050	< 0.0050	< 0.0050								
Al-D	mg/L	< 0.015	< 0.0030	< 0.0030								
As-D	mg/L	< 0.00050	0.00020	0.00022								
Ba-D	mg/L	0.0107	0.0181	0.0186								
B-D	mg/L	0.26	0.500	0.546								
Be-D	mg/L	< 0.00050	< 0.00010	< 0.00010								
Cd-D	mg/L	< 0.000050	< 0.000010	< 0.000010								
Ca-D	mg/L	96.4	151	176								
Cr-D	mg/L	< 0.0050	< 0.0010	< 0.0010								
Co-D	mg/L	< 0.0010	< 0.00020	< 0.00020								
Cu-D	mg/L	< 0.0010	0.00025	0.00021								
Hard-D	mg/L	272	431	499								
Fe-D	mg/L	< 0.025	0.0062	0.0144								
Pb-D	mg/L	< 0.0010	< 0.00020	< 0.00020								
Mg-D	mg/L	7.69	13.3	14.6								
Mn-D	mg/L	< 0.0050	0.0054	0.0110								
Mo-D	mg/L	< 0.0050	< 0.0010	< 0.0010								
Ni-D	mg/L	< 0.0050	< 0.0010	< 0.0010								
K-D	mg/L	0.73	1.40	1.51								
S-D	mg/L	80	159	182								
Se-D	mg/L	<0.00050	0.00010	< 0.00010								
Si-D	mg/L	2.57	2.39	2.59								
Na-D	mg/L	37.7	70.6	83.7								
Sr-D	mg/L	0.744	1.51	1.84								
Zn-D	mg/L	< 0.025	<0.0050	< 0.0050								

Table 17 2-South Outflow Culvert into 3-South Pit 1 Page(s)

EMS ID				
Site Description	2-South O	utflow Culvert i	nto 3-South Dit	
Site Description	2SC	utilow Culvert	1110 3-South 1 1t	•
Date	200	02-04-2024	06-05-2024	03-06-2024
pH-F	pH Units	7.9	7.24	7.83
Cond-F	uS/cm	1348	1419	1442
SO4-D	mg/L	640	590	640
Alk-T	mg/L	190	200	190
Acidity83	mg/L	<1.0	2.4	2.1
Al-T	mg/L	< 0.0030	< 0.0030	< 0.0030
As-T	mg/L	0.00018	0.00020	0.00024
Ba-T	mg/L	0.0115	0.0112	0.0130
B-T	mg/L	0.269	0.303	0.349
Cd-T	mg/L	< 0.000010	0.000025	< 0.000010
Ca-T	mg/L	234	215	232
Cr-T	mg/L	< 0.0010	< 0.0010	< 0.0010
Co-T	mg/L	< 0.00020	< 0.00020	< 0.00020
Cu-T	mg/L	< 0.00050	< 0.00050	< 0.00050
Hard-T	mg/L	704	653	685
Fe-T	mg/L	0.023	< 0.010	0.017
Pb-T	mg/L	< 0.00020	< 0.00020	< 0.00020
Mg-T	mg/L	29.1	28.2	25.5
Mn-T	mg/L	0.0039	0.0037	0.0201
Mo-T	mg/L	< 0.0010	< 0.0010	< 0.0010
Ni-T	mg/L	< 0.0010	< 0.0010	< 0.0010
K-T	mg/L	1.80	1.84	1.98
S-T	mg/L	207	192	205
Se-T	mg/L	0.00021	0.00018	0.00035
Si-T	mg/L	2.30	2.17	2.24
Ag-T	mg/L	< 0.000020	< 0.000020	< 0.000020
Na-T	mg/L	29.7	33.4	43.2
Sr-T	mg/L	1.35	1.29	1.43
Zn-T	mg/L	0.0060	< 0.0050	< 0.0050
Al-D	mg/L	< 0.015	< 0.0060	< 0.0060
As-D	mg/L	< 0.00050	< 0.00020	0.00021
Ba-D	mg/L	0.0128	0.0132	0.0150
B-D	mg/L	0.28	0.40	0.44
Be-D	mg/L	< 0.00050	<0.00020	< 0.00020
Cd-D	mg/L	< 0.000050	< 0.000020	< 0.000020
Ca-D	mg/L	262	251	256
Cr-D	mg/L	< 0.0050	< 0.0020	< 0.0020
Co-D	mg/L	< 0.0010	< 0.00040	< 0.00040
Cu-D	mg/L	< 0.0010	0.00047	< 0.00040
Hard-D	mg/L	781	759	760
Fe-D	mg/L	< 0.025	< 0.010	0.010
Pb-D	mg/L	< 0.0010	< 0.00040	< 0.00040
Mg-D	mg/L	30.6	32.3	29.3
Mn-D	mg/L	< 0.0050	0.0041	0.0229
Mo-D	mg/L	< 0.0050	<0.0020	< 0.0020
Ni-D	mg/L	< 0.0050	< 0.0020	< 0.0020
K-D	mg/L	1.93	2.17	2.03
S-D	mg/L	208	226	231
Se-D	mg/L	< 0.00050	0.00033	0.00057
Si-D	mg/L	2.19	2.62	2.29
Na-D	mg/L	33.5	38.7	48.6
Sr-D	mg/L	1.34	1.50	1.63
Zn-D	mg/L	< 0.025	< 0.010	<0.010
Ln D	mg/L	V0.023	<0.010	<0.010

Table 18 3-South Pit Water Cover Over PAG-CCR 1 Page(s)

EMS ID	E217015									
Site Description	3-South Pit Water Cover Over PAG-CCR									
Site Name	3S									
Date		02-04-2024	06-05-2024	03-06-2024						
pH-F	pH Units	7.93	7.26	7.9						
Cond-F	uS/cm	1323	1418	1428						
SO4-D	mg/L	630	580	680						
Alk-T	mg/L	190	200	190						
Acidity83	mg/L	<1.0	2.1	1.7						
Al-T	mg/L	0.0037	< 0.0030	< 0.0030						
As-T	mg/L	0.00018	0.00017	0.00022						
Ва-Т	mg/L	0.0115	0.0111	0.0131						
В-Т	mg/L	0.272	0.313	0.350						
Cd-T	mg/L	< 0.000010	< 0.000010	< 0.000010						
Ca-T	mg/L	234	225	231						
Cr-T	mg/L	< 0.0010	< 0.0010	< 0.0010						
Со-Т	mg/L	<0.00020	< 0.00020	< 0.00020						
Cu-T	mg/L	< 0.00050	<0.00050	< 0.00050						
Hard-T	mg/L mg/L	703	677	679						
Fe-T	mg/L mg/L	0.019	<0.010	0.015						
Pb-T	mg/L mg/L	<0.0020	<0.0020	<0.0020						
Mg-T	mg/L mg/L	29.0	27.9	25.1						
Mn-T	mg/L	0.0038	0.0033	0.0193						
Mo-T		<0.0038	<0.0010	<0.0010						
	mg/L									
Ni-T	mg/L	<0.0010	<0.0010	<0.0010						
K-T	mg/L	1.85	1.85	1.97						
S-T	mg/L	211	191	208						
Se-T	mg/L	0.00022	0.00016	0.00034						
Si-T	mg/L	2.30	2.27	2.29						
Ag-T	mg/L	<0.000020	<0.000020	<0.000020						
Na-T	mg/L	29.9	33.1	42.8						
Sr-T	mg/L	1.37	1.27	1.45						
Zn-T	mg/L	< 0.0050	< 0.0050	< 0.0050						
Al-D	mg/L	< 0.015	< 0.0060	< 0.0060						
As-D	mg/L	< 0.00050	< 0.00020	< 0.00020						
Ba-D	mg/L	0.0121	0.0130	0.0149						
B-D	mg/L	0.29	0.39	0.42						
Be-D	mg/L	< 0.00050	< 0.00020	< 0.00020						
Cd-D	mg/L	< 0.000050	< 0.000020	< 0.000020						
Ca-D	mg/L	261	259	259						
Cr-D	mg/L	< 0.0050	< 0.0020	< 0.0020						
Co-D	mg/L	< 0.0010	< 0.00040	< 0.00040						
Cu-D	mg/L	< 0.0010	< 0.00040	< 0.00040						
Hard-D	mg/L	774	781	769						
Fe-D	mg/L	< 0.025	< 0.010	< 0.010						
Pb-D	mg/L	< 0.0010	< 0.00040	< 0.00040						
Mg-D	mg/L	29.6	32.7	29.3						
Mn-D	mg/L	< 0.0050	0.0040	0.0219						
Mo-D	mg/L	< 0.0050	< 0.0020	< 0.0020						
Ni-D	mg/L	<0.0050	<0.0020	<0.0020						
K-D	mg/L	1.88	2.18	2.03						
S-D	mg/L mg/L	198	227	228						
Se-D	mg/L mg/L	<0.00050	0.00029	0.00054						
Si-D	mg/L	2.17	2.73	2.31						
Na-D	mg/L	32.5	38.9	48.5						
Sr-D	mg/L	1.31	1.50	1.62						
Zn-D	mg/L	< 0.025	< 0.010	< 0.010						

Table 19 Culvert Downstream End at Access Road 1 Page(s)

EMS ID	E217014				
Site Description		ovenstvoom l	End at Access I	Dood	
Site Name	SPC	ownsti cam i	Ellu at Access 1	Noau	
Date	SFC	02-04-2024	06-05-2024	03-06-2024	03-06-2024
pH-F	pH Units	7.69	7.05	7.8	7.8
Cond-F	uS/cm	311	602	644	644
SO4-D	mg/L	110	230	260	250
TSS	mg/L	<1.0	1.6	<1.0	<1.0
Alk-T	mg/L	45	70	78	77
Acidity83	mg/L	<1.0	<1.0	<1.0	<1.0
Al-T	mg/L	<1.0	0.0388	<1.0	<1.0
As-T	mg/L		0.00039		
Ba-T	mg/L		0.00039		
B-T	mg/L		0.0134		
Cd-T	mg/L		< 0.000010		
Ca-T			72.2		
Cr-T	mg/L mg/L		<0.0010		
Co-T	mg/L		<0.00020		
Cu-T	mg/L		0.00056		
Hard-T	mg/L		219 0.047		
Fe-T Pb-T	mg/L		<0.0020		
	mg/L				
Mg-T	mg/L		9.33		
Mn-T	mg/L		0.0014		
Mo-T	mg/L		<0.0010		
Ni-T	mg/L		<0.0010		
K-T	mg/L		0.610		
S-T	mg/L		69.0		
Se-T	mg/L		<0.00010		
Si-T	mg/L		2.02		
Ag-T	mg/L		<0.000020		
Na-T	mg/L		18.3		
Sr-T	mg/L		0.479		
Zn-T	mg/L		< 0.0050		
Al-D	mg/L		0.0340		
As-D	mg/L		0.00043		
Ba-D	mg/L		0.0150		
B-D	mg/L		0.171		
Be-D	mg/L		< 0.00010		
Cd-D	mg/L		< 0.000010		
Ca-D	mg/L		82.9		
Cr-D	mg/L		< 0.0010		
Co-D	mg/L		< 0.00020		
Cu-D	mg/L		0.00038		
Hard-D	mg/L		250		
Fe-D	mg/L		0.0368		
Pb-D	mg/L		< 0.00020		
Mg-D	mg/L		10.4		
Mn-D	mg/L		< 0.0010		
Mo-D	mg/L		< 0.0010		
Ni-D	mg/L		< 0.0010		
K-D	mg/L		0.741		
S-D	mg/L		76.9		
Se-D	mg/L		< 0.00010		
Si-D	mg/L		2.37		
Na-D	mg/L		20.2		
Sr-D	mg/L		0.541		
Zn-D	mg/L		< 0.0050		

Table 20 South End Mine Water Entering Long Lake Near the Outlet 1 Page(s)

EMS ID	E292130				Stn Std	Max-WQG											
Site Description	1.272130				oth otd	max-11QG	South 1	End Mine Wat	er Entering I	ong Lake Ne	ar the Outlet						
Site Bescription	16						goutin's	Situ Milito III	er Emering I	Jong Buile 110	ur une ounee						
Site Name	LLE	Std Val															
Date	m3/s	Max	02-04-2024	08-04-2024	0.00545	0.00374	29-04-2024 0.01808	06-05-2024 0.01172	0.00324	13-05-2024 0.00324	0.0039	0.0039	27-05-2024 0.02388	03-06-2024	0.00578	17-06-2024 0.01408	24-06-2024 0.00319
Flow pH-F	pH Units		7.52	7.32	7.09	7.11	7.22	6.73	7.18	7.18	7.07	7.07	7.25	7.55	7.37	7.3	7.16
Cond-F	uS/cm		348	445	388	488	536	469	518	518	608	608	436	543	696	581	7.10
SO4-D	mg/L		110	170	140	180	190	160	220	220	220	220	150	210	210	210	260
TSS	mg/L		1.2					<1.0						<1.0			
DOC	mg/L		4.8					5.0						5.9			
Alk-T	mg/L		44					57						65			
Acidity83	mg/L		<1.0					1.6						1.3			
N-NH3	mg/L	12.9	<0.015					<0.015						< 0.015			
N-NO23 P-T	mg/L mg/L		<0.020 0.0050					<0.020 0.0058						<0.020 0.0043			
Al-T	mg/L		0.0030					0.0038						0.0043			
Al-T (Chronic WQG)			0.270					0.190						0.330			
As-T	mg/L		0.00062					0.00042						0.00041			
Ba-T	mg/L		0.0111					0.0190						0.0170			
В-Т	mg/L		0.098					0.155						0.136			
Cd-T	mg/L		< 0.000010					< 0.000010						< 0.000010			
Ca-T	mg/L		39.4					54.3						65.6			
Cr-T	mg/L	0	<0.0010					<0.0010				-		<0.0010			
Co-T Cu-T	mg/L	0.11	<0.00020 <0.00050					<0.00020 <0.00050						<0.00020 <0.00050			
Hard-T	mg/L mg/L		119					166						196			
Fe-T	mg/L	1.0	0.145					0.233						0.184			
Pb-T	mg/L	0.0176	<0.00020					< 0.00020						<0.00020			
Mg-T	mg/L		5.01					7.42						7.90			
Mn-T	mg/L	0.8706	0.0110					0.0276						0.0203			
Mo-T	mg/L	46.0	< 0.0010					< 0.0010						< 0.0010			
Ni-T	mg/L		< 0.0010					< 0.0010						< 0.0010			
K-T	mg/L		0.441					0.576						0.552			
S-T Se-T	mg/L		34.5 <0.00010					52.0 <0.00010						60.1 <0.00010			
Si-T	mg/L mg/L		2.60					2.21						2.52			
Ag-T	mg/L	0.0001	<0.000020					<0.000020				<u> </u>		<0.000020			
Na-T	mg/L	0.000	10.4					14.8						16.5			
Sr-T	mg/L		0.255					0.358						0.441			
Zn-T	mg/L	0.033	< 0.0050					< 0.0050						< 0.0050			
Al-D	mg/L		0.035					0.0205						0.0234			
As-D	mg/L		< 0.00050					0.00041						0.00046			
Ba-D	mg/L		0.0121					0.0210						0.0201			
B-D Be-D	mg/L mg/L		<0.25 <0.00050					0.156 <0.00010				-		0.158 <0.00010			
Cd-D	mg/L mg/L	0.00017	<0.00050					<0.00010						<0.00010			
Ca-D	mg/L	0.00017	44.3					60.4						77.5			
Cr-D	mg/L		< 0.0050					< 0.0010						< 0.0010			
Co-D	mg/L		< 0.0010					< 0.00020						< 0.00020			
Cu-D	mg/L		< 0.0010					0.00048						0.00047			
Hard-D	mg/L		132					184						233			
Fe-D	mg/L	0.35	0.117					0.182						0.151			
Pb-D	mg/L		< 0.0010					<0.00020 8.11						<0.00020 9.66			
Mg-D Mn-D	mg/L mg/L		5.24 0.0114					0.0300					<u> </u>	0.0241			
Mo-D	mg/L		< 0.0050					< 0.0010						< 0.0010			
Ni-D	mg/L		< 0.0050					< 0.0010						< 0.0010			
K-D	mg/L		0.47					0.677						0.658			
S-D	mg/L		31					56.8						70.8			
Se-D	mg/L		< 0.00050					< 0.00010						< 0.00010			
Si-D	mg/L		2.47					2.58						2.86			
Na-D	mg/L		12.0					16.2				1		19.9			
Sr-D	mg/L	0.022	0.256					0.398				-		0.540			
Zn-D	mg/L	0.033	< 0.025					< 0.0050						< 0.0050			

Table 21 Seep into Long Lake 1 Page(s)

EMS ID	E292131		Stn Std		Max-WQG
Site Description	Seep into	Long Lake			
Site Name	LLS	Std Val			
Date		Max	02-04-2024	06-05-2024	29-05-2024
SG	m		0.009	0.009	Dry
pH-F	pH Units		7.47		
Cond-F	uS/cm		1525		
SO4-D	mg/L		610		
TSS	mg/L		2.8		
Alk-T	mg/L		210		
Acidity83	mg/L		3.1	Not reaching	the lake. Water
Al-T	mg/L	0.130	0.0203	level to low	to collect a
As-T	mg/L		0.00170	san	nple.
Ba-T	mg/L		0.0188		
B-T	mg/L		0.456		
Cd-T	mg/L		0.000011		
Ca-T	mg/L		206		
Cr-T	mg/L		< 0.0010		
Со-Т	mg/L	0.11	0.00079		
Cu-T	mg/L		0.00096		
Hard-T	mg/L		597		
Fe-T	mg/L	1.0	1.22		
Pb-T	mg/L	0.0176	< 0.00020		
Mg-T	mg/L		20.1		
Mn-T	mg/L	0.8706	0.194		
Мо-Т	mg/L	46.0	< 0.0010		
Ni-T	mg/L		0.0020		
K-T	mg/L		2.17		
S-T	mg/L		211		
Se-T	mg/L		< 0.00010		
Si-T	mg/L		2.38		
Ag-T	mg/L	0.0001	< 0.000020		
Na-T	mg/L		66.2		
Sr-T	mg/L		1.94		
Zn-T	mg/L	0.033	< 0.0050		
Al-D	mg/L		< 0.015		
As-D	mg/L		0.00058		
Ba-D	mg/L		0.0190		
B-D	mg/L		0.47		
Be-D	mg/L		<0.00050		
Cd-D	mg/L	0.00017	<0.000050		
Ca-D	mg/L		235		
Cr-D	mg/L		<0.0050		
Co-D	mg/L	0.0042	<0.0010		
Cu-D	mg/L	0.0043	<0.0010		
Hard-D	mg/L	0.25	674		
Fe-D	mg/L	0.35	0.183	-	
Pb-D	mg/L		<0.0010		
Mg-D	mg/L		21.1		
Mn-D	mg/L		0.207		
Mo-D	mg/L		<0.0050	1	
Ni-D	mg/L		<0.0050	1	
K-D	mg/L		2.23	1	
S-D	mg/L		196		
Se-D	mg/L		<0.00050		
Si-D	mg/L		2.20		
Na-D	mg/L		73.0		
Sr-D	mg/L	0.022	1.85	-	
Zn-D	mg/L	0.033	< 0.025		

Table 22 Long Lake Middle Seep 1 Page(s)

	Table 22 Long Lake Middle Seep 1 Page(s) EMS ID E292131 Max-WQG						
	E292131		-				
Site Description	T T C T T	Long Lake Mi	ddle Seep				
Site Name	LLSM	Std Val					
Date	1	Max	02-04-2024				
Wlevel	m 		0.06				
pH-F Cond-F	pH Units		7.5				
SO4-D	uS/cm		1145				
TSS	mg/L		410				
Alk-T	mg/L		1.2 170				
Acidity83	mg/L		<1.0				
Al-T	mg/L mg/L	0.150	0.0057				
As-T		0.130					
Ba-T	mg/L mg/L		0.00019 0.0171				
B-T	mg/L		0.332				
Cd-T	-		<0.00010				
Ca-T	mg/L		<0.00010 149				
Cr-T	mg/L mg/L		<0.0010				
Co-T	mg/L	0.11	<0.0010				
Cu-T	mg/L	0.11	<0.00020				
Hard-T	mg/L		434				
Fe-T	mg/L	1.0	0.073				
Pb-T	mg/L	0.0176	<0.00020				
Mg-T	mg/L	0.0170	15.1				
Mn-T	mg/L	0.8706	0.0315				
Mo-T	mg/L	46.0	<0.0010				
Ni-T	mg/L	40.0	<0.0010				
K-T	mg/L		1.74				
S-T	mg/L		139				
Se-T	mg/L		<0.00010				
Si-T	mg/L		2.30				
Ag-T	mg/L	0.0001	<0.00020				
Na-T	mg/L	0.0001	48.7				
Sr-T	mg/L		1.33				
Zn-T	mg/L	0.033	<0.0050				
Al-D	mg/L	0.033	<0.015				
As-D	mg/L		<0.0050				
Ba-D	mg/L		0.0187				
B-D	mg/L		0.36				
Be-D	mg/L		<0.00050				
Cd-D	mg/L	0.00017	<0.000050				
Ca-D	mg/L	0.00017	169				
Cr-D	mg/L		< 0.0050				
Co-D	mg/L		< 0.0010				
Cu-D	mg/L	0.0043	<0.0010				
Hard-D	mg/L	333333	487				
Fe-D	mg/L	0.35	0.062				
Pb-D	mg/L		< 0.0010				
Mg-D	mg/L		16.0				
Mn-D	mg/L		0.0320				
Mo-D	mg/L		<0.0050				
Ni-D	mg/L		< 0.0050				
K-D	mg/L		1.87				
S-D	mg/L		138				
Se-D	mg/L		<0.00050				
Si-D	mg/L		2.22				
Na-D	mg/L		53.2				
Sr-D	mg/L		1.31				
Zn-D	mg/L	0.033	<0.025				
	1 6						

Table 23 Authorised Discharge Location for 7S South Mine Water 1 Page(s)

EMS ID	E292069 PL-7S						
Site Description	Authorised Discharge Location for 7S South Mine Water						
Site Name	7SSD	Std Val					
Date		Max	02-04-2024				
pH-F	pH Units	6.00 - 8.00	8.33				
Cond-F	uS/cm		203				
SO4-D	mg/L	500	5.3				
TSS	mg/L	25	1.6				
Alk-T	mg/L		91				
Acidity83	mg/L		<1.0				
DOC	mg/L		1.8				
Al-T	mg/L		0.0287				
As-T	mg/L		0.00058				
Ba-T	mg/L		0.0041				
B-T	mg/L		< 0.050				
Cd-T	mg/L		< 0.000010				
Ca-T	mg/L		23.9				
Cr-T	mg/L		< 0.0010				
Со-Т	mg/L		< 0.00020				
Cu-T	mg/L		0.00058				
Hard-T	mg/L		83.2				
Fe-T	mg/L		0.071				
Pb-T	mg/L		< 0.00020				
Mg-T	mg/L		5.70				
Mn-T	mg/L		0.0604				
Мо-Т	mg/L		< 0.0010				
Ni-T	mg/L		< 0.0010				
K-T	mg/L		0.159				
S-T	mg/L		<3.0				
Se-T	mg/L		< 0.00010				
Si-T	mg/L		5.02				
Ag-T	mg/L		< 0.000020				
Na-T	mg/L		2.66				
Sr-T	mg/L		0.0841				
Zn-T	mg/L		< 0.0050				
Al-D	mg/L	0.1	< 0.015				
As-D	mg/L		0.00053				
Ba-D	mg/L		< 0.0050				
B-D	mg/L		< 0.25				
Be-D	mg/L		< 0.00050				
Cd-D	mg/L	0.000045	< 0.000050				
Ca-D	mg/L		26.0				
Cr-D	mg/L		< 0.0050				
Co-D	mg/L		< 0.0010				
Cu-D	mg/L	0.014	< 0.0010				
Hard-D	mg/L		88.7				
Fe-D	mg/L	0.35	< 0.025				
Pb-D	mg/L		< 0.0010				
Mg-D	mg/L		5.80				
Mn-D	mg/L		0.0231				
Mo-D	mg/L		< 0.0050				
Ni-D	mg/L		< 0.0050				
K-D	mg/L		< 0.25				
S-D	mg/L		<15				
Se-D	mg/L	0.016	< 0.00050				
Si-D	mg/L		4.56				
Na-D	mg/L		3.03				
Sr-D	mg/L		0.0827				
Zn-D	mg/L		<0.025				
_n. v	1118/12		NO.U4J				

Table 24 7 South Portal Sump 1 Page(s)

EMS ID	E292110			
Site Description	7 South Po	rtal Sumn		
Site Name	7SPS	тип вишр		
Date		02-04-2024	06-05-2024	03-06-2024
pH-F	pH Units	6.88	6.65	7.31
Cond-F	uS/cm	554	691	650
SO4-D	mg/L	200	240	220
TSS	mg/L	11	8.0	
Alk-T	mg/L	64	110	120
Acidity83	mg/L	2.5	4.8	2.0
Al-T	mg/L	0.157	0.0700	0.0557
As-T	mg/L	0.00137	0.00124	0.00141
Ba-T	mg/L	0.0115	0.0137	0.0152
В-Т	mg/L	0.072	0.108	0.072
Cd-T	mg/L	0.000025	0.000014	< 0.000010
Ca-T	mg/L	68.1	88.6	83.5
Cr-T	mg/L	< 0.0010	< 0.0010	< 0.0010
Co-T	mg/L	0.00420	0.00251	0.00121
Cu-T	mg/L	0.00305	0.00112	0.00108
Hard-T	mg/L	240	313	283
Fe-T	mg/L	4.82	4.03	2.63
Pb-T	mg/L	< 0.00020	< 0.00020	< 0.00020
Mg-T	mg/L	17.0	22.2	18.2
Mn-T	mg/L	0.199	0.178	0.0945
Mo-T	mg/L	< 0.0010	< 0.0010	< 0.0010
Ni-T	mg/L	0.0088	0.0055	0.0031
K-T	mg/L	0.664	0.697	0.713
S-T	mg/L	64.7	78.8	66.4
Se-T	mg/L	< 0.00010	< 0.00010	<0.00010
Si-T	mg/L	5.10	4.85	4.26
Ag-T	mg/L	<0.000020	<0.000020	<0.000020
Na-T	mg/L	4.84	8.41	7.70
Sr-T	mg/L	0.251	0.344	0.325
Zn-T	mg/L	0.0166	0.0106	< 0.0050
Al-D	mg/L	< 0.015	< 0.0030	0.0043
As-D	mg/L	0.00054	0.00045	0.00048
Ba-D	mg/L	0.0140	0.0135	0.0171
B-D	mg/L	<0.25	0.104	0.097
Be-D	mg/L	< 0.00050	< 0.00010	< 0.00010
Cd-D	mg/L	< 0.000050	0.000010	< 0.000010
Ca-D	mg/L	73.7	90.5	97.0
Cr-D	mg/L	< 0.0050	< 0.0010	< 0.0010
Co-D	mg/L	0.0044	0.00258	0.00132
Cu-D	mg/L	0.0013	0.00061	0.00074
Hard-D	mg/L	253	322	331
Fe-D	mg/L	2.46	0.569	0.119
Pb-D	mg/L	< 0.0010	< 0.00020	<0.00020
Mg-D	mg/L	16.9	23.3	21.7
Mn-D	mg/L	0.192	0.186	0.112
Mo-D	mg/L	< 0.0050	< 0.0010	< 0.0010
Ni-D	mg/L	0.0087	0.0057	0.0035
K-D	mg/L	0.66	0.780	0.824
S-D	mg/L	59	82.8	76.3
Se-D	mg/L	<0.00050	<0.00010	<0.00010
Si-D	mg/L	4.60	4.91	4.46
Na-D	mg/L	5.26	8.56	9.07
Sr-D	mg/L mg/L	0.239	0.359	0.397
Zn-D	mg/L	<0.025	0.0075	<0.0050

Table 25 Road Side Crossing Bridge on Stream 1 above the Lower Wetland 1 Page(s)

EMS ID	E292109		Max-WQG		
Site Description	Road Side		ridge on Stream 1 al	bove the Lower Wet	land
Site Name	7S	Std Val			
Date	1	Max	02-04-2024	06-05-2024	03-06-2024
SG	m		0.201	0.168	1.75
pH-F	pH Units		7.36	6.57	6.74
Cond-F	uS/cm		38.5	50.4	54.8
SO4-D	mg/L		1.7	2.7	2.5
TSS	mg/L		<1.0	<1.0	<1.0
Alk-T	mg/L		14	22	23
Acidity83	mg/L		<1.0	1.4	1.1
DOC	mg/L		2.3	1.5	1.3
Al-T	mg/L		0.0246	0.0158	0.0156
Al-T (Chronic WQG)	mg-L		0.11	0.032	0.037
As-T	mg/L		< 0.00010	< 0.00010	< 0.00010
Ba-T	mg/L		0.0014	0.0016	0.0016
B-T	mg/L		< 0.050	< 0.050	< 0.050
Cd-T	mg/L		< 0.000010	< 0.000010	< 0.000010
Ca-T	mg/L		3.93	4.77	5.17
Cr-T	mg/L		< 0.0010	< 0.0010	< 0.0010
Со-Т	mg/L	0.11	< 0.00020	< 0.00020	< 0.00020
Cu-T	mg/L		< 0.00050	< 0.00050	< 0.00050
Hard-T	mg/L		13.7	17.0	17.7
Fe-T	mg/L	1.0	< 0.010	< 0.010	< 0.010
Pb-T	mg/L	0.0176	< 0.00020	< 0.00020	< 0.00020
Mg-T	mg/L		0.937	1.23	1.15
Mn-T	mg/L	0.8706	< 0.0010	< 0.0010	< 0.0010
Mo-T	mg/L	46.0	< 0.0010	< 0.0010	< 0.0010
Ni-T	mg/L		< 0.0010	< 0.0010	< 0.0010
K-T	mg/L		0.073	0.077	0.069
S-T	mg/L		<3.0	<3.0	<3.0
Se-T	mg/L		< 0.00010	< 0.00010	< 0.00010
Si-T	mg/L		3.78	3.99	4.39
Ag-T	mg/L	0.0001	< 0.000020	< 0.000020	< 0.000020
Na-T	mg/L		1.42	1.63	1.70
Sr-T	mg/L		0.0154	0.0197	0.0207
Zn-T	mg/L	0.033	< 0.0050	< 0.0050	< 0.0050
Al-D	mg/L		0.023	0.0174	0.0170
As-D	mg/L		< 0.00050	< 0.00010	< 0.00010
Ba-D	mg/L		< 0.0050	0.0018	0.0019
B-D	mg/L		< 0.25	< 0.050	< 0.050
Be-D	mg/L		< 0.00050	< 0.00010	< 0.00010
Cd-D	mg/L	0.00017	< 0.000050	< 0.000010	< 0.000010
Ca-D	mg/L		4.75	5.39	5.95
Cr-D	mg/L		< 0.0050	< 0.0010	< 0.0010
Co-D	mg/L		< 0.0010	< 0.00020	< 0.00020
Cu-D	mg/L		< 0.0010	0.00023	0.00020
Cu-D (Acute-WQG)	mg/L		0.0026	0.0004	0.0006
Hard-D	mg/L		15.7	18.9	20.5
Fe-D	mg/L	0.35	< 0.025	< 0.0050	< 0.0050
Pb-D	mg/L		< 0.0010	< 0.00020	< 0.00020
Mg-D	mg/L		0.93	1.32	1.36
Mn-D	mg/L		< 0.0050	< 0.0010	< 0.0010
Mo-D	mg/L		< 0.0050	< 0.0010	< 0.0010
Ni-D	mg/L		< 0.0050	< 0.0010	< 0.0010
K-D	mg/L		< 0.25	0.083	0.080
S-D	mg/L		<15	<3.0	<3.0
Se-D	mg/L		< 0.00050	< 0.00010	< 0.00010
Si-D	mg/L		3.69	4.59	4.76
Na-D	mg/L		1.65	1.77	1.96
Sr-D	mg/L		0.0171	0.0218	0.0256
Zn-D	mg/L	0.033	< 0.025	< 0.0050	< 0.0050

Table 26 Discharge From Settling Pond #4 1 Page(s)

Date	Settling Pond #4 April	April	Mari	Mari	June	June
Date	Max. (m ³ /s)	Aprii Daily (m ³ /s)	May Max. (m ³ /s)	May Daily (m ³ /s)	June Max. (m³/s)	Daily (m ³ /s
1	0.1310	0.1230	0.1300	0.0900	0.0880	0.0810
2	0.1310	0.1230	0.0860	0.0720	0.0870	0.0830
3	0.1310	0.1140	0.0930	0.0760	0.1040	0.0900
4	0.1230	0.1050	0.1000	0.0800	0.1170	0.0950
5	0.1160	0.0940	0.1120	0.0980	0.1000	0.0870
6	0.1200	0.0980	0.1210	0.0980	0.0970	0.0850
7	0.1170	0.1000	0.1150	0.0830	0.0930	0.0810
8	0.1090	0.0950	0.0930	0.0780	0.0980	0.0840
9	0.1150	0.1000	0.1100	0.0920	0.0950	0.0850
10	0.1010	0.0870	0.1170	0.0950	0.1000	0.0840
11	0.1030	0.0810	0.1170	0.0950	0.1030	0.0870
12	0.0690	0.0620	0.1100	0.0920	0.0950	0.0830
13	0.0690	0.0560	0.1140	0.0990	0.1080	0.0860
14	0.0690	0.0550	0.1010	0.0930	0.1090	0.0940
15	0.0690	0.0540	0.1150	0.0970	0.1070	0.0930
16	0.0870	0.0690	0.1070	0.0790	0.1010	0.0890
17	0.0900	0.0790	PNC	PNC	0.1270	0.1000
18	0.0880	0.0780	PNC	PNC	0.1000	0.0850
19	0.0890	0.0770	PNC	PNC	0.1090	0.0890
20	0.1250	0.0910	PNC	PNC	0.1200	0.0920
21	0.1310	0.1180	0.0950	0.0950	0.0960	0.0780
22	0.1300	0.1180	PNC	PNC	0.0740	0.0660
23	0.1300	0.1150	PNC	PNC	0.0720	0.0660
24	0.1300	0.1160	PNC	PNC	0.0740	0.0600
25	0.1300	0.1210	PNC	PNC	0.0740	0.0570
26	0.1400	0.1320	PNC	PNC	0.0710	0.0570
27	0.1380	0.1220	0.1310	0.1310	0.0780	0.0650
28	0.1390	0.1340	PNC	PNC	0.0620	0.0560
29	0.1310	0.1130	0.1640	0.1640	0.0640	0.0600
30	0.1080	0.0810	0.1120	0.1100	0.0630	0.0550
31			0.0880	0.0800		
Monthly Max	0.1400		0.1640		0.1270	
Monthly Avg		0.0970		0.0951		0.0791

TSS is required weekly when daily Max flow is >0.054 m3/s. All flow is subject to review.

No Flow =NF

Permit Non-compliance = PNC

Table 27 Discharge From Settling Pond #1 1 Page(s)

Discharge From Set	_					
Date	April	April	May	May	June	June
	Max. (m³/s)	Daily (m³/s)	Max. (m³/s)	Daily (m ³ /s)	Max. (m³/s)	Daily (m³/s
1	PNC	PNC	0.0341	0.0160	0.0443	0.0250
2	0.1970	0.0250	0.0341	0.0091	0.0443	0.0160
3	PNC	PNC	0.0250	0.0091	0.0443	0.0091
4	0.0160	0.0091	0.0160	0.0091	0.0341	0.0160
5	PNC	PNC	0.0443	0.0250	0.0250	0.0091
6	PNC	PNC	0.0443	0.0091	0.0341	0.0160
7	PNC	PNC	0.0534	0.0250	0.0250	0.0091
8	PNC	PNC	0.0250	0.0091	0.0639	0.0091
9	0.0534	0.0534	0.0160	0.0032	0.0341	0.0091
10	0.0160	0.0000	0.0160	0.0032	0.0341	0.0091
11	0.1970	0.1970	0.0160	0.0032	0.0341	0.0091
12	PNC	PNC	0.0091	0.0032	0.0341	0.0160
13	PNC	PNC	0.0091	0.0032	0.0160	0.0032
14	0.1970	PNC	0.0091	0.0032	0.0443	0.0160
15	0.0091	0.0032	0.0091	0.0032	0.0341	0.0091
16	0.1970	0.1970	0.0091	0.0032	0.0250	0.0091
17	0.1970	0.1970	0.0091	0.0000	0.0341	0.0091
18	0.1970	0.1279	0.0091	0.0032	0.0341	0.0091
19	0.0250	PNC	0.0091	0.0000	0.0250	0.0091
20	0.0443	PNC	0.0091	0.0000	0.0250	0.0091
21	0.0639	PNC	0.0160	0.0032	0.0250	0.0032
22	0.0764	PNC	0.0091	0.0000	0.0250	0.0091
23	0.1970	0.1970	0.0091	0.0000	0.0160	0.0032
24	0.1970	0.1970	0.0160	0.0091	0.0250	0.0032
25	0.1970	0.0443	0.0341	0.0091	0.0341	0.0160
26	0.1382	0.0639	0.0443	0.0160	0.0764	0.0250
27	0.1522	PNC	0.0160	0.0091	0.0877	0.0639
28	0.1667	PNC	0.1970	0.0032	0.0877	0.0443
29	0.1970	PNC	0.0443	0.0160	0.0989	0.0443
30	0.0534	0.0341	0.1970	0.0250	0.0989	0.0341
31		-	0.0443	0.0160		
Monthly Max Monthly Avg	0.1970	0.0961	0.1970	0.0080	0.0989	0.0157

TSS is required weekly when daily Max flow is $> 0.046 \, \text{m}$ 3/s. All flow is subject to review.

No Flow =NF

Permit Non-compliance = PNC

Table 28 Discharge From 7 South Surface 1 Page(s)

EMS ID E292069	9		
Discharge From	7 South Surface D	Decant Pond (7SSD)	
	April	May	June
		D. 11	
Date		Daily Average L/S	
1	NF	NF	NF
2	NF	NF	NF
3	NF	NF	NF
4	NF	NF	NF
5	NF	NF NE	NF NE
6 7	NF	NF	NF
	NF	NF	NF
8	NF	NF	NF NE
9	NF	NF	NF
10	NF	NF	NF
11	NF	NF	NF
12	NF	NF	NF
13	NF	NF	NF
14	NF	NF	NF
15	NF	NF	NF
16	NF	NF	NF
17	NF	NF	NF
18	NF	NF	NF
19	NF	NF	NF
20	NF	NF	NF
21	NF	NF	NF
22	NF	NF	NF
23	NF	NF	NF
24	NF	NF	NF
25	NF	NF	NF
26	NF	NF	NF
27	NF	NF	NF
28	NF	NF	NF
29	NF	NF	NF
30	NF	NF	NF
31	NF	NF	NF
Monthly Avg	0.000	0.000	0.000
Annual Avg	0.000		
_	aily Totalizer Valu	e	
	ecant Flow (5.00		
No Flow = NF	(2.00		
10 . 10 10 - 141			

Table 29 2S Inflow and Outflow 1 Page(s)

EMS ID: E292127 2-South Pit Inflow			EMS ID: E292127 2-South Pit Outflow					
2S Inflow			2S Outflow Culvert into 3S Pit					
Date	April	May	June	Date	April	May	June	
	Q (L/s)	Q (L/s)	Q (L/s)		Q (L/s)	Q (L/s)	Q (L/s)	
1	12.895	13.726	4.95	1	6.374	3.846	10.762	
2	14.952	13.275	2.43	2	6.538	4.274	10.629	
3	17.281	10.881	2.39	3	6.605	3.854	10.834	
4	16.758	10.805	1.84	4	6.211	3.987	9.842	
5	17.178	10.488	2.58	5	5.820	3.990	9.739	
6	17.321	10.144	2.43	6	5.601	4.063	10.184	
7	16.506	9.588	2.22	7	5.986	3.963	9.025	
8	16.164	9.571	2.21	8	5.734	3.671	8.387	
9	15.266	9.484	2.11	9	5.879	3.557	8.042	
10	14.061	9.465	2.10	10	5.311	3.463	7.890	
11	14.742	9.643	2.25	11	5.311	3.489	9.615	
12	14.814	9.786	2.03	12	5.387	3.493	8.476	
13	14.356	9.958	1.95	13	4.878	3.774	7.729	
14	14.058	9.988	2.22	14	4.584	3.516	8.384	
15	11.960	10.029	2.17	15	4.741	3.645	9.703	
16	9.695	10.232	2.08	16	4.708	3.530	9.116	
17	9.493	10.221	0.76	17	4.375	3.665	8.129	
18	7.331	10.807	0.07	18	4.249	3.585	7.739	
19	8.620	10.688	0.06	19	4.191	3.633	7.641	
20	8.675	10.323	0.08	20	4.255	3.392	7.104	
21	8.654	12.600	0.08	21	4.399	3.787	6.819	
22	8.457	11.725	0.08	22	4.021	4.150	6.901	
23	8.765	11.124	0.08	23	4.072	3.416	7.170	
24	8.896	14.978	0.06	24	4.153	3.997	7.242	
25	8.976	14.850	0.05	25	4.408	4.456	7.035	
26	10.920	14.663	1.11	26	4.671	4.067	8.226	
27	10.438	14.452	3.01	27	4.391	4.190	17.025	
28	10.305	13.867	1.85	28	4.339	4.065	10.640	
29	8.011	13.975	1.37	29	3.949	7.500	5.388	
30	13.042	12.980	0.99	30	4.036	10.603	4.778	
31		12.43		31		10.249		

Table 30 Flow Requirements 7 Page(s)

Water Lev EMS ID:		
	E292131	
Site I	LLS	
		Water Level (m)
Weeks	Level (m)	Weeks
1	0.009	32
2	Dry	33
3	Dry	34
4	Dry	35
5	Dry	36
6	Dry	37
7	Dry	38
8	Dry	39
9	Dry	40
10	Dry	41
11	Dry	42
12	Dry	43
13	Dry	44
14		45
15		46
16		47
17		48
18		49
19		50
20		51
21		52
22		
23		
24		
25		
26		
27		
28		
29		
30		
31	flow = NF. Flow rates we	

2023-24, mostly not reaching the lake.

Table 30 Flow Requirements 7 Page(s)

EMS ID:	ow Requiremen E292131	(2, 5)	
Site	LLSM		
Flow (L/s)			
Date	Apr	May	June
1	1.376	NF	NF
2	1.946	NF	NF
3	1.946	NF	NF
4	1.946	NF	NF
5	1.376	NF	NF
6	1.376	NF	NF
7	1.376	NF	NF
8	0.909	NF	NF
9	0.909	NF	NF
10	0.539	NF	NF
11	0.263	NF	NF
12	0.078	NF	NF
13	NF	NF	NF
14	NF	NF	NF
15	NF	NF	NF
16	NF	NF	NF
17	NF	NF	NF
18	NF	NF	NF
19	NF	NF	NF
20	NF	NF	NF
21	NF	NF	NF
22	NF	NF	NF
23	NF	NF	NF
24	NF	NF	NF
25	NF	NF	NF
26	NF	NF	NF
27	NF	NF	NF
28	NF	NF	NF
29	NF	NF	NF
30	NF	NF	NF
31		NF	NF

Table 30 Flow Requirements 7 Page(s)

0	El D	*	-1
		uirements (L/	s)
EMS ID:	E292109		
Site	7 S		
Flow (L/S)	Estimated Flov	N
Date	Apr	May	June
1	2.43	0.44	0.1969
2	1.87	0.37	0.2120
3	1.58	0.34	0.2154
4	1.26	0.24	0.1093
5	0.97	0.24	0.2554
6	0.85	0.26	0.2245
7	0.84	0.26	0.1789
8	0.74	0.23	0.1160
9	0.66	0.18	0.0826
10	0.71	0.15	0.0645
11	0.71	0.11	0.1171
12	0.67	0.08	0.1186
13	0.59	0.05	0.0687
14	0.54	0.03	0.0919
15	0.50	0.02	0.1776
16	0.52	0.02	0.1736
17	0.50	0.01	0.1070
18	0.23	0.01	0.0544
19	0.37	0.01	0.0241
20	0.34	0.00	0.0122
21	0.30	0.06	0.0055
22	0.32	0.20	0.0017
23	0.25	0.17	0.0004
24	0.24	0.21	0.0001
25	0.28	0.26	0.0001
26	0.47	0.27	0.0831
27	0.59	0.25	2.3977
28	0.53	0.2235	1.0077
29	0.35	0.2439	0.6362
30	0.45	0.2394	0.4981
31		0.2084	
Notes: No	o flow = NF		

Table 30 Flow Requirements 7 Page(s)

li	une
1	.00
	.00
_	.02
_	.04
_	.03
	.03
	.04
	.10
	.10
	.09
	.30
_	.29
	.28
	.27
	.25
	.25
_	.24
	.24
_	.18
_	.10
	.09
	.08
1	.08
1	.08
1	.07
1	.11
1	.13
1	.13
1	.13
1	.12
1	

Table 30 Flow Requirements 7 Page(s)

5 in 30 F	low Requirem	nents (Level)	
EMS ID:	900504	, ,	
Site	WB		
Average L	evel (m)		
Date	Apr	May	June
1	0.593	0.563	0.472
2	0.593	0.532	0.476
3	0.589	0.520	0.466
4	0.587	0.501	0.458
5	0.579	0.491	0.471
6	0.574	0.484	0.474
7	0.577	0.481	0.473
8	0.577	0.482	0.470
9	0.571	0.483	0.471
10	0.580	0.477	0.471
11	0.579	0.468	0.478
12	0.574	0.463	0.485
13	0.572	0.460	0.487
14	0.570	0.461	0.488
15	0.567	0.463	0.487
16	0.567	0.459	0.488
17	0.569	0.456	0.482
18	0.560	0.458	0.482
19	0.567	0.455	0.480
20	0.564	0.456	0.476
21	0.561	0.468	0.473
22	0.569	0.464	0.468
23	0.564	0.465	0.461
24	0.565	0.472	0.461
25	0.564	0.472	0.462
26	0.570	0.473	0.478
27	0.573	0.478	0.504
28	0.569	0.475	0.505
29	0.554	0.471	0.502
30	0.568	0.473	0.499
31		0.474	

Table 30 Flow Requirements 7 Page(s)

F := 20 F	law Baswi							
5 in 30 Flow Requirements EMS ID: E219412								
Site	LLO							
Average L Date		Mari	luma					
	Apr	May	June 0.2813					
1	0.4282	0.2957						
2	0.4162	0.2996	0.2833					
3	0.4013	0.3007	0.2727					
4	0.3895	0.2924	0.2603					
5	0.3715	0.2850	0.2716					
6	0.3564	0.2777	0.2731					
7	0.3536	0.2746	0.2708					
8	0.3568	0.2757	0.2601					
9	0.3552	0.2715	0.2516					
10	0.3591	0.2627	0.2478					
11	0.3525	0.2514	0.2477					
12	0.3414	0.2405	0.2461					
13	0.3326	0.2300	0.2426					
14	0.3229	0.2256	0.2438					
15	0.3134	0.2241	0.2449					
16	0.3095	0.2148	0.2441					
17	0.3092	0.2063	0.2335					
18	0.2944	0.2088	0.2260					
19	0.2938	0.2055	0.2195					
20	0.2827	0.2037	0.2144					
21	0.2743	0.2210	0.2100					
22	0.2759	0.2317	0.2029					
23	0.2722	0.2378	0.1934					
24	0.2717	0.2540	0.1904					
25	0.2693	0.2709	0.1881					
26	0.2880	0.2812	0.2296					
27	0.3009	0.2892	0.3564					
28	0.2977	0.2892	0.3899					
29	0.2739	0.2845	0.3791					
30	0.2941	0.2854	0.3631					
31	0.2541	0.2850	0.5051					
	ow curve is	s being develo	ped.					

Table 30 Flow Requirements 7 Page(s)

in 30 Flow Requirements					
MS ID:	E297232				
Site	IR8				
erage Le	evel (m)				
Date	Apr	May	June		
1	1.14	1.01	0.97		
2	1.14	1.01	0.98		
3	1.13	1.01	0.97		
4	1.09	1.02	0.96		
5	1.05	1.04	0.98		
6	1.03	1.02	0.98		
7	1.02	1.00	0.96		
8	1.02	0.99	0.94		
9	1.03	1.02	0.93		
10	1.02	1.05	0.92		
11	1.02	1.05	0.92		
12	1.03	1.03	0.92		
13	1.02	0.99	0.91		
14	1.02	0.98	0.90		
15	1.02	0.99	0.89		
16	1.01	0.98	0.89		
17	0.99	0.96	0.87		
18	0.97	0.94	0.87		
19	0.97	0.92	0.86		
20	0.97	0.91	0.86		
21	0.96	0.95	0.85		
22	0.97	1.01	0.84		
23	0.96	0.97	0.84		
24	0.98	1.00	0.83		
25	1.02	1.09	0.83		
26	1.10	1.04	0.91		
27	1.14	1.03	1.08		
28	1.09	1.01	1.07		
29	1.03	1.00	1.05		
30	1.03	0.99	1.03		
31		0.98			

Daily Precipitation (mm)	Naile Dracinitation	1 Doga/	.1
DATE	APRIL	MAY	JUNE
1	0.0	9.1	1.1
2	3.5	0.0	3.4
3	0.0	0.0	0.0
4	0.0	0.0	4.7
5	0.0	1.3	4.7
6	0.8	1.7	0.0
7	0.0	0.1	0.0
8	7.2	0.0	0.0
9	0.1	0.0	0.0
10	0.0	0.0	8.8
11	3.9	0.0	1.1
12	0.0	0.0	0.0
13	0.0	0.0	0.0
14	0.0	0.0	7.9
15	0.8	0.0	1.7
16	0.1	0.0	0.0
17	0.0	0.0	0.0
18	0.0	5.3	0.0
19	0.0	0.0	0.0
20	0.0	0.3	0.0
21	0.2	21.4	0.0
22	0.0	0.0	1.3
23	0.0	2.8	1.0
24	2.1	20.1	0.0
25	13.5	0.0	0.0
26	3.9	3.2	47.8
27	0.1	4.0	3.1
28	0.0	0.2	1.8
29	1.8	3.1	3.8
30	2.7	0.1	0.0
31		2.1	
Monthly Total (mm)	40.70	74.80	92.20
Quarterly Total (mm)	207.70		

Table 32 Groundwater Wells - Description 1 Page(s)

Area	Groundwater ID	In-situ / Ex- situ	Screened Interval	Comment
	1 Mains 2-North (1M2N)	In-situ	No. 1 Seam	Flooded Underground Workings in 1-Mains Area, Dewatering well
	5 Mains#2 (5M#2)	In-situ	No. 1 Seam	Flooded Underground Workings in 5-Mains Area, Dewatering well
	3 Mains 2-North (3M2N)	In-situ	No. 1 Seam	Flooded Underground Workings in 3-Mains Area, Underground Pump System
	QU08-21GD	Ex-situ	No. 1 Seam	Down gradient of u/g tailings disposal, measure water quality and
	QU08-21GS	Ex-situ	No. 4 Coal Seam and	hydraulic gradients downstream of forjan fault
2-North	QU10-10D	Ex-situ	No. 1 Seam / mudstone	Down gradient of u/g tailings disposal, measures water quality and
	QU10-10S	Ex-situ	No. 4 Seam /	hydraulic head downgradient of 2 North workings
	QU10-11S	Ex-situ	Fractured Sandstone	Measure water quality and hydraulic gradient in Forjan Fault
	QU10-11D	Ex-situ	No.1 Seam	Down gradient of u/g tailings disposal, measures water quality and hydraulic head down gradient t of 2 North workings
	QU10-13D	In-situ	Caved Zone	Down gradient of u/g tailings disposal, measures water quality and hydraulic head down gradient of 2 North workings
5-South Mine Void	5SMW	In-situ	Mine Pool (1 Seam)	Water pumped from 5-South Flooded Mine Pool into 3-Mains of 2-North Mine
milic Void	QU0516	In-situ	(1 Seam)	In a pillar of the flooded mine void
	QU11-05S	Ex-situ	Sandstone	Down gradient of u/g tailings disposal, measures water quality and hydraulic head, down gradient of 2-North workings
River Barrier	QU11-05D	Ex-situ	Sandstone	Monitoring water quality and vertical gradients from of the RBP and 2-North mine.
Pillar (RBP)	QU11-09S	Ex-situ	Sandstone	Monitoring water quality & upward vertical gradients of the RBP and 2-North workings. Mine pool – CCR backfill in River Barrier Pillar
	QU11-09M	In-situ	RBP Mine Pool	Monitoring water quality in the RBP and 2-North workings. Mine pool – CCR backfill in River Barrier Pillar.
	MW-00-1S	Ex-situ	Till	Shallow groundwater below coal pad (well collapsed)
2-North	MW-00-1D	Ex-situ	1-Seam	Deeper groundwater below the coal pad (well collapsed)
Plant Site	MW-00-6D	Ex-situ	Till	Deeper groundwater below the coal pad
	MW-00-6S	Ex-situ	Till	Shallow groundwater below coal pad
	QU10-08D	Ex-situ	No. 3 Seam	4 South (just outside mine pool) up gradient of existing workings
4-South	QU11-01	In-Situ	Foot print area of 4 South GOB	Assess 4 South Flooded Mine Void Water Chemistry
	QU10-09S	Ex-situ	Down gradient of existing workings	Access vertical gradients and water quality adjacent to Long Lake.
	QU10-09D	Ex-situ	Down gradient of existing workings	Access vertical gradients and water quality adjacent to Long Lake.
	MW002	Ex-situ	1 Seam	3S Pit Shallow Groundwater
2-South & 3-South	MW004	In-Situ	Mine Pool (1 Seam)	2-South Mine Pool Gob depillared area
	QU11-11 (INF)	In-Situ	Mine Pool (1 Seam)	2-South mine pool dewatering well for Passive Treatment System
	1M7SA5	In-Situ	No. 4 Coal Seam	Underground sump collects water from 7SA5, 2Mains and 1Mains pumps to 5-South Mine
	2M7S	In-Situ	No. 4 Coal Seam	Flooded (PAG -CCR) 2-Mains area pumps intermittenly to 1M7SA5
	3M7S	In-Situ	No. 4 Coal Seam	3-Mains Area Underground
7-South	QU08-10	Ex-situ	No. 4 Coal Seam	Downgradient of 7S - screened No. 3 Coal - Southern margin of workings
	QU08-13A	Ex-situ	No. 4 Coal Seam	Downgradient of the CCR backfill towards QR
	QU08-13B	Ex-situ	Till & SST contact	Downgradient of the CCR backfill towards QR
	QU14-10	In-Situ	Mine Void	Flooded PAG-CCR water cover in mine void
7- South	7SA5	In-Situ	Sump	Underground sump collects water in 7SA5, pumps it to 1Mains
Area 5	QU11-35	Ex-situ	Sandstone above No. 4 Seam	South end of 7SA5 footprint at 100280m N (mine grid)
040 455:	QU11-36D	Ex-situ	Sandstone below No. 5 seam	Downgradient of 7SA5
242 AREA	242MW	In-situ	No. 4 Seam	Flooded mine void

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description	on	2 and 3 North Ex-Situ		
	Well ID *Station Type Surface Elevation (m ASL)		QU0821GS	QU0821GD GW 215	
			GW		
			215		
H₂O Level (b	elow top of	casing) (m ASL)	215	215	
H₂O Level be	elow top of c	asing (m)	At surface	At surface	
Date			5-Jun-24	5-Jun-24	
Parameter	Units	CSR-AW			
SO4-D	mg/L	1280	<1.0	<10	
H2SEquiv	mg/L	0.02	0.117	0.0659	
Cond-F	uS/cm		405.1	2479	
рН-F	pH Units		8.12	7.56	
Temp-F	С		10.9	9.6	
DO-F	mg/L		0.25	0.4	
ORP-F	mV		-86.7	-80.3	
Turb	NTU		0.92	11	
Alk-T	mg/L		190	200	
Acidity83	mg/L		<1.0	2.5	
N-D	mg/L		0.325	0.866	
DOC	mg/L		1.5	<0.50	
Hydrox	mg/L		<1.0	<1.0	
Bicarb	mg/L		230	240	
Carb	mg/L		1.8	<1.0	
CI-D	mg/L	1500	50	890	
F-D	mg/L		1.7	1.1	
Flu-CSR	mg/L		2.00	3.00	
Br-D	mg/L		0.081	1.32	
P-D	mg/L		0.075	0.059	
Al-D	mg/L		<0.0060	<0.015	
Ag-D	mg/L		<0.000040	<0.00010	
Ag-CSR	mg/L		0.000500	0.0150	
As-D	mg/L	0.05	0.207	0.222	
Ba-D	mg/L	10	0.281	3.00	
B-D	mg/L	12	1.94	3.34	
Be-D	mg/L	0.053	<0.00020	<0.00050	
Bi-D	mg/L		<0.0020	<0.0050	

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description		2 and 3 North Ex-Situ		
	Well ID		QU0821GS	QU0821GD	
	*Station Type Surface Elevation (m ASL)		GW	GW 215	
			215		
H ₂ O Level (below top of casing) (m ASL)			215	215	
H₂O Level b	elow top of casing	(m)	At surface	At surface	
Date			5-Jun-24	5-Jun-24	
Parameter	Units C	SR-AW	1		
Cd-D	mg/L		<0.000020	<0.00050	
Cd-CSR	mg/L		0.000300	0.000600	
Ca-D	mg/L		13.3	134	
Cr-D	mg/L	0.01	<0.0020	<0.0050	
Co-D	mg/L	0.009	<0.00040	<0.0010	
Cu-D	mg/L		<0.00040	<0.0010	
Cu-CSR	mg/L		0.0200	0.0900	
Fe-D	mg/L		0.324	1.28	
Hard-D	mg/L		47.9	405	
Pb-D	mg/L		<0.00040	<0.0010	
Pb-CSR	mg/L		0.0400	0.160	
Mg-D	mg/L		3.55	17.1	
Mn-D	mg/L		0.0278	0.0884	
Na-D	mg/L		99.8	633	
Mo-D	mg/L	10	<0.0020	<0.0050	
Ni-D	mg/L		<0.0020	<0.0050	
Ni-CSR	mg/L		0.250	1.50	
K-D	mg/L		3.86	10.4	
S-D	mg/L		<6.0	<15	
Sb-D	mg/L	0.2	<0.0010	<0.0025	
Se-D	mg/L	0.01	<0.00020	<0.00050	
Si-D	mg/L		3.12	4.78	
Sr-D	mg/L		0.413	2.76	
TI-D	mg/L	0.003	<0.000020	<0.00050	
Ti-D	mg/L	1	<0.010	<0.025	
U-D	mg/L	3	<0.00020	<0.00050	
V-D	mg/L		<0.010	<0.025	
Zn-D	mg/L		<0.010	<0.025	
Zn-CSR	mg/L		0.075	2.400	

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description		RBP Ex-Situ		
	Well ID *Station Type Surface Elevation (m ASL) H ₂ O Level (below top of casing) (m ASL)		QU1105S	QU1105D	QU1109S
			GW	GW	GW
			229	229	227
H ₂ O Level (b			207	211	223
H ₂ O Level below top of casing (m)		22	18	4	
Date		15-May-24	15-May-24	9-Apr-24	
Parameter	Units	CSR-AW			
SO4-D	mg/L	1280	54	210	70
H2SEquiv	mg/L	0.02	0.191	20.2	1.49
Cond-F	uS/cm		389.9	4800.6	721.8
pH-F	pH Units		6.92	7.69	7.84
Temp-F	С		9.924	10.287	8.151
DO-F	mg/L		-0.6	-0.56	-0.52
ORP-F	mV		-257.2	-356.1	-231
Turb	NTU		5.8	2.3	2.6
Alk-T	mg/L		150	410	320
Acidity83	mg/L		1.8	<1.0	<1.0
N-D	mg/L		0.132	0.759	0.274
DOC	mg/L		1.4	1.2	1.5
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		190	410	390
Carb	mg/L		<1.0	45	<1.0
CI-D	mg/L	1500	1.0	1300	7.0
F-D	mg/L		0.19	<0.050	0.50
Flu-CSR	mg/L		3.00	3.00	2.00
Br-D	mg/L		<0.010	2.21	0.015
P-D	mg/L		<0.0030	0.0037	0.044
Al-D	mg/L		<0.0030	<0.015	<0.0030
Ag-D	mg/L		<0.000020	<0.00010	<0.000020
Ag-CSR	mg/L		0.000500	0.0150	0.000500
As-D	mg/L	0.05	0.0573	0.00184	0.102
Ba-D	mg/L	10	0.0737	0.172	0.0400
B-D	mg/L	12	0.445	0.44	1.15
Be-D	mg/L	0.053	<0.00010	<0.00050	<0.00010
Bi-D	mg/L		<0.0010	<0.0050	<0.0010

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description		RBP Ex-Situ		
	Well ID *Station Type Surface Elevation (m ASL) H ₂ O Level (below top of casing) (m ASL)		QU1105S	QU1105D	QU1109S
			GW	GW	GW
			229	229	227
H₂O Level (k			207	211	223
H₂O Level b	H₂O Level below top of casing (m)		22	18	4
Date			15-May-24	15-May-24	9-Apr-24
Parameter	Units	CSR-AW			
Cd-D	mg/L		<0.00010	<0.00050	<0.000010
Cd-CSR	mg/L		0.000500	0.000600	0.000100
Ca-D	mg/L		30.3	142	7.19
Cr-D	mg/L	0.01	<0.0010	<0.0050	<0.0010
Co-D	mg/L	0.009	<0.00020	<0.0010	<0.00020
Cu-D	mg/L		<0.00020	<0.0010	<0.00020
Cu-CSR	mg/L		0.0400	0.0900	0.0200
Fe-D	mg/L		1.38	<0.025	0.0235
Hard-D	mg/L		99.1	376	25.0
Pb-D	mg/L		<0.00020	<0.0010	<0.00020
Pb-CSR	mg/L		0.0500	0.160	0.0400
Mg-D	mg/L		5.72	5.09	1.72
Mn-D	mg/L		0.121	0.0829	0.0166
Na-D	mg/L		48.3	906	175
Mo-D	mg/L	10	<0.0010	<0.0050	<0.0010
Ni-D	mg/L		<0.0010	<0.0050	<0.0010
Ni-CSR	mg/L		0.650	1.50	0.250
K-D	mg/L		2.16	5.11	2.51
S-D	mg/L		18.5	330	40.4
Sb-D	mg/L	0.2	<0.00050	<0.0025	<0.00050
Se-D	mg/L	0.01	0.00020	0.0748	0.0117
Si-D	mg/L		2.69	3.95	4.86
Sr-D	mg/L		0.343	1.84	0.142
TI-D	mg/L	0.003	<0.00010	<0.000050	<0.000010
Ti-D	mg/L	1	<0.0050	<0.025	<0.0050
U-D	mg/L	3	<0.00010	<0.00050	<0.00010
V-D	mg/L		<0.0050	<0.025	<0.0050
Zn-D	mg/L		<0.0050	<0.025	<0.0050
Zn-CSR	mg/L		0.150	2.400	0.075

Page 53

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Descripti	ion	7-South Ex-Situ Groundwater				
	Well ID		QU0810	QU0813A	QU0813A	QU0813A	
	*Station T	уре	GW	GW	GW	GW	
	Surface E	levation (m ASL)	296	221	221	221	
H₂O Level (b	elow top of	casing) (m ASL)	271	209	208	207	
H₂O Level be	elow top of	casing (m)	25	12	13	14	
Date			7-May-24	16-Apr-24	14-May-24	24-Jun-24	
Parameter	Units	CSR-AW		1	ı	ı	
SO4-D	mg/L	1280	420	46	52	49	
H2SEquiv	mg/L	0.02	0.00999	0.181	0.00191	0.244	
Cond-F	uS/cm		1156.4	465.5	533.9	524.3	
pH-F	pH Units		6.73	7.57	7.58	7.67	
Temp-F	С		13.984	10.861	10.434	9.4	
DO-F	mg/L		0.24	-0.36	-0.41	0.34	
ORP-F	mV		55.7	-170.7	-178.8	-129.1	
Turb	NTU		15	3.8	2.2	2.6	
Alk-T	mg/L		220	200	210	200	
Acidity83	mg/L		10.8	<1.0	<1.0	<1.0	
N-D	mg/L		0.373	0.234	0.263	0.241	
DOC	mg/L		1.0	0.93	1.0	0.83	
Hydrox	mg/L		<1.0	<1.0	<1.0	<1.0	
Bicarb	mg/L		270	250	250	240	
Carb	mg/L		<1.0	<1.0	<1.0	<1.0	
Cl-D	mg/L	1500	<1.0	11	11	13	
F-D	mg/L		0.32	0.64	0.64	0.65	
Flu-CSR	mg/L		3.00	3.00	3.00	3.00	
Br-D	mg/L		<0.010	0.022	0.020	0.022	
P-D	mg/L		0.011	0.089	0.076	0.062	
Al-D	mg/L		<0.0030	<0.0030	<0.0030	<0.0030	
Ag-D	mg/L		<0.000020	<0.000020	<0.000020	<0.000020	
Ag-CSR	mg/L		0.0150	0.0150	0.0150	0.0150	
As-D	mg/L	0.05	0.00030	0.344	0.356	0.317	
Ba-D	mg/L	10	0.0353	0.159	0.158	0.155	
B-D	mg/L	12	0.331	0.793	0.783	0.851	
Be-D	mg/L	0.053	<0.00010	<0.00010	<0.00010	<0.00010	
Bi-D	mg/L		<0.0010	<0.0010	<0.0010	<0.0010	

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Descripti	on	7-South Ex-Situ Groundwater				
	Well ID		QU0810	QU0813A	QU0813A	QU0813A	
	*Station T	ype	GW	GW	GW	GW	
	Surface E	levation (m ASL)	296	221	221	221	
H ₂ O Level (b	elow top of	casing) (m ASL)	271	209	208	207	
H ₂ O Level be	elow top of o	casing (m)	25	12	13	14	
Date			7-May-24	16-Apr-24	14-May-24	24-Jun-24	
Parameter	Units	CSR-AW					
Cd-D	mg/L		0.000040	<0.000010	<0.000010	<0.000010	
Cd-CSR	mg/L		0.000600	0.000500	0.000500	0.000500	
Ca-D	mg/L		186	37.2	39.9	41.6	
Cr-D	mg/L	0.01	<0.0010	<0.0010	<0.0010	<0.0010	
Co-D	mg/L	0.009	0.00127	<0.00020	<0.00020	<0.00020	
Cu-D	mg/L		0.00037	<0.00020	<0.00020	<0.00020	
Cu-CSR	mg/L		0.0900	0.0600	0.0600	0.0600	
Fe-D	mg/L		0.0517	0.278	0.183	0.165	
Hard-D	mg/L		629	132	138	145	
Pb-D	mg/L		<0.00020	<0.00020	<0.00020	<0.00020	
Pb-CSR	mg/L		0.160	0.0600	0.0600	0.0600	
Mg-D	mg/L		39.8	9.42	9.34	10.1	
Mn-D	mg/L		0.148	0.0447	0.0331	0.0332	
Na-D	mg/L		9.47	54.3	60.3	58.3	
Mo-D	mg/L	10	<0.0010	<0.0010	<0.0010	<0.0010	
Ni-D	mg/L		0.0069	<0.0010	<0.0010	<0.0010	
Ni-CSR	mg/L		1.50	1.10	1.10	1.10	
K-D	mg/L		4.20	2.31	2.41	2.44	
S-D	mg/L		150	19.6	19.2	19.1	
Sb-D	mg/L	0.2	<0.00050	<0.00050	<0.00050	<0.00050	
Se-D	mg/L	0.01	<0.00010	0.00071	0.00125	0.00471	
Si-D	mg/L		4.09	3.84	3.80	4.00	
Sr-D	mg/L		1.64	0.564	0.555	0.603	
TI-D	mg/L	0.003	0.000032	<0.000010	<0.00010	<0.000010	
Ti-D	mg/L	1	<0.0050	<0.0050	<0.0050	<0.0050	
U-D	mg/L	3	0.00117	<0.00010	<0.00010	<0.00010	
V-D	mg/L		<0.0050	<0.0050	<0.0050	<0.0050	
Zn-D	mg/L		<0.0050	<0.0050	<0.0050	<0.0050	
Zn-CSR	mg/L		2.400	0.900	0.900	0.900	

Notes:

Station Type: Mine Water (MW) and Groundwater (GW).

** Calculated Parameters

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description		7-South Ex-Situ	Groundwater	
	Well ID *Station Type		QU0813B	QU0813B	QU0813B
			GW	GW	GW
	Surface E	levation (m ASL)	221	221	221
H ₂ O Level (b	elow top of	casing) (m ASL)	208	207	204
H₂O Level be	low top of	casing (m)	13	15	17
Date			16-Apr-24	14-May-24	25-Jun-24
Parameter	Units	CSR-AW			
SO4-D	mg/L	1280	160	190	220
H2SEquiv	mg/L	0.02	0.0223	0.0181	0.0159
Cond-F	uS/cm		526.4	638.5	664
pH-F	pH Units		7.53	7.67	7.81
Temp-F	С		9.166	9.118	10
DO-F	mg/L		-0.38	-0.28	0.61
ORP-F	mV		-168.5	-170.6	19.7
Turb	NTU		5.9	8.2	6.2
Alk-T	mg/L		130	130	140
Acidity83	mg/L		<1.0	<1.0	<1.0
N-D	mg/L		0.222	0.232	0.296
DOC	mg/L		0.95	1.0	0.88
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		160	160	170
Carb	mg/L		<1.0	<1.0	<1.0
CI-D	mg/L	1500	1.3	<1.0	1.1
F-D	mg/L		0.31	0.31	0.28
Flu-CSR	mg/L		3.00	3.00	3.00
Br-D	mg/L		<0.010	<0.010	<0.010
P-D	mg/L		0.18	0.21	0.19
Al-D	mg/L		<0.0030	<0.0030	<0.0030
Ag-D	mg/L		<0.000020	<0.000020	<0.000020
Ag-CSR	mg/L		0.0150	0.0150	0.0150
As-D	mg/L	0.05	0.550	0.581	0.550
Ba-D	mg/L	10	0.120	0.127	0.141
B-D	mg/L	12	0.398	0.355	0.401
Be-D	mg/L	0.053	<0.00010	<0.00010	<0.00010
Bi-D	mg/L		<0.0010	<0.0010	<0.0010

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description		7-South Ex-Situ Groundwater			
	Well ID		QU0813B	QU0813B	QU0813B	
	*Station T	уре	GW	GW	GW	
	Surface E	levation (m ASL)	221	221	221	
H₂O Level (b	elow top of	casing) (m ASL)	208	207	204	
H ₂ O Level be	elow top of	casing (m)	13	15	17	
Date			16-Apr-24	14-May-24	25-Jun-24	
Parameter	Units	CSR-AW				
Cd-D	mg/L		<0.000010	<0.000010	<0.000010	
Cd-CSR	mg/L		0.000600	0.000600	0.000600	
Ca-D	mg/L		66.9	77.5	86.8	
Cr-D	mg/L	0.01	<0.0010	<0.0010	<0.0010	
Co-D	mg/L	0.009	<0.00020	<0.00020	<0.00020	
Cu-D	mg/L		<0.00020	<0.00020	<0.00020	
Cu-CSR	mg/L		0.0900	0.0900	0.0900	
Fe-D	mg/L		0.412	0.496	0.531	
Hard-D	mg/L		221	252	286	
Pb-D	mg/L		<0.00020	<0.00020	<0.00020	
Pb-CSR	mg/L		0.110	0.110	0.110	
Mg-D	mg/L		13.1	14.2	16.7	
Mn-D	mg/L		0.130	0.130	0.154	
Na-D	mg/L		29.6	31.1	33.6	
Mo-D	mg/L	10	0.0022	0.0021	0.0021	
Ni-D	mg/L		<0.0010	<0.0010	<0.0010	
Ni-CSR	mg/L		1.50	1.50	1.50	
K-D	mg/L		1.89	1.93	2.08	
S-D	mg/L		57.3	64.0	76.1	
Sb-D	mg/L	0.2	<0.00050	<0.00050	<0.00050	
Se-D	mg/L	0.01	<0.00010	<0.00010	0.00012	
Si-D	mg/L		4.48	4.43	4.66	
Sr-D	mg/L		0.583	0.641	0.755	
TI-D	mg/L	0.003	<0.00010	<0.000010	<0.000010	
Ti-D	mg/L	1	<0.0050	<0.0050	<0.0050	
U-D	mg/L	3	<0.00010	<0.00010	<0.00010	
V-D	mg/L		<0.0050	<0.0050	<0.0050	
Zn-D	mg/L		<0.0050	<0.0050	<0.0050	
Zn-CSR	mg/L		1.650	1.650	1.650	

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description		4-South Ex-Situ	2 / 3 Sou	th In-Situ
	Well ID		QU1008D	MW002	MW004
	*Station T	ype	GW	MW	MW
	Surface E	levation (m ASL)	338	325	347.8
H₂O Level (b	elow top of	casing) (m ASL)	304	318.2	298.1
H₂O Level be	elow top of o	casing (m)	34	3.73	42.2
Date			4-Jun-24	29-Apr-24	2-May-24
Parameter	Units	CSR-AW			
SO4-D	mg/L	1280	<1.0	1200	360
H2SEquiv	mg/L	0.02	0.106	0.000957	0.000957
Cond-F	uS/cm		489	2274.3	912.8
pH-F	pH Units		8.3	6.68	6.84
Temp-F	С		8.8	10.374	9.992
DO-F	mg/L		0.29	-0.46	1.13
ORP-F	mV		-110.6	-52.4	161.6
Turb	NTU		150	67	2.2
Alk-T	mg/L		250	280	120
Acidity83	mg/L		<1.0	20.7	1.4
N-D	mg/L		0.198	0.231	0.136
DOC	mg/L		2.9	1	1.9
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		280	340	140
Carb	mg/L		12	<1.0	<1.0
Cl-D	mg/L	1500	3.4	<1.0	<1.0
F-D	mg/L		1.8	0.081	0.067
Flu-CSR	mg/L		2.00	3.000	3.00
Br-D	mg/L		<0.010	<0.10	<0.010
P-D	mg/L		0.16	0.0052	<0.0030
Al-D	mg/L		0.0121	<0.0060	0.0107
Ag-D	mg/L		<0.000040	<0.000040	<0.000020
Ag-CSR	mg/L		0.000500	0.01500	0.0150
As-D	mg/L	0.05	0.140	0.00222	0.00039
Ba-D	mg/L	10	0.0258	0.0144	0.0204
B-D	mg/L	12	1.82	0.78	0.185
Be-D	mg/L	0.053	<0.00020	<0.00020	<0.00010
Bi-D	mg/L		<0.0020	<0.0020	<0.0010

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Descript	ion	4-South Ex-Situ	2 / 3 South In-Situ		
	Well ID		QU1008D	MW002	MW004	
	*Station T	уре	GW	MW	MW	
	Surface E	levation (m ASL)	338	325	347.8	
H₂O Level (b	elow top of	casing) (m ASL)	304	318.2	298.1	
H₂O Level be	elow top of	casing (m)	34	3.73	42.2	
Date			4-Jun-24	29-Apr-24	2-May-24	
Parameter	Units	CSR-AW				
Cd-D	mg/L		<0.000020	<0.000020	<0.000010	
Cd-CSR	mg/L		0.000100	0.0006000	0.000600	
Ca-D	mg/L		2.26	516	145	
Cr-D	mg/L	0.01	<0.0020	<0.0020	<0.0010	
Co-D	mg/L	0.009	<0.00040	0.00299	<0.00020	
Cu-D	mg/L		<0.00040	<0.00040	0.00078	
Cu-CSR	mg/L		0.0200	0.09000	0.0900	
Fe-D	mg/L		0.076	5.4	0.0127	
Hard-D	mg/L		6.52	1510	436	
Pb-D	mg/L		<0.00040	<0.00040	<0.00020	
Pb-CSR	mg/L		0.0400	0.1600	0.160	
Mg-D	mg/L		0.22	54	17.8	
Mn-D	mg/L		0.119	1.74	0.0109	
Na-D	mg/L		113	52.7	29.6	
Mo-D	mg/L	10	<0.0020	<0.0020	<0.0010	
Ni-D	mg/L		<0.0020	0.0022	<0.0010	
Ni-CSR	mg/L		0.250	1.500	1.50	
K-D	mg/L		0.60	5.99	1.37	
S-D	mg/L		<6.0	455	127	
Sb-D	mg/L	0.2	<0.0010	<0.0010	<0.00050	
Se-D	mg/L	0.01	0.00119	<0.00020	<0.00010	
Si-D	mg/L		5.06	4.2	3.23	
Sr-D	mg/L		0.0549	4.43	1.06	
TI-D	mg/L	0.003	<0.000020	<0.000020	<0.000010	
Ti-D	mg/L	1	<0.010	<0.010	<0.0050	
U-D	mg/L	3	<0.00020	0.00038	<0.00010	
V-D	mg/L		<0.010	<0.010	<0.0050	
Zn-D	mg/L		<0.010	<0.010	<0.0050	
Zn-CSR	mg/L		0.075	2.400	2.400	

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description	on	2-North In-Situ	RBP Ex-Situ
	Well ID		QU1013D	QU1109M
	*Station Ty	/pe	MW	MW
	Surface Ele	evation (m ASL)	270.68	226.897
H₂O Level (b	elow top of	casing) (m ASL)	127.68	143.032
H₂O Level be	elow top of c	asing (m)	78.42	19.27
Date			28-May-24	9-Apr-24
Parameter	Units	CSR-AW	,	
SO4-D	mg/L	1280	530	430
H2SEquiv	mg/L	0.02	0.0542	0.0308
Cond-F	uS/cm		1875.9	1769.2
рН-F	pH Units		6.7	7.06
Temp-F	С		8.101	8.377
DO-F	mg/L		-0.56	-0.47
ORP-F	mV		-132.7	-142.3
Turb	NTU		32	71
Alk-T	mg/L		470	490
Acidity83	mg/L		10.6	3.6
N-D	mg/L		0.332	0.376
DOC	mg/L		0.85	0.90
Hydrox	mg/L		<1.0	<1.0
Bicarb	mg/L		570	600
Carb	mg/L		<1.0	<1.0
CI-D	mg/L	1500	9.5	28
F-D	mg/L		0.061	0.098
Flu-CSR	mg/L		3.00	3.00
Br-D	mg/L		<0.10	0.062
P-D	mg/L		0.0080	0.0052
Al-D	mg/L		<0.0030	<0.0030
Ag-D	mg/L		<0.00020	<0.000020
Ag-CSR	mg/L		0.0150	0.0150
As-D	mg/L	0.05	0.00342	0.00243
Ba-D	mg/L	10	0.0670	0.0145
B-D	mg/L	12	1.07	0.904
Be-D	mg/L	0.053	<0.00010	<0.00010
Bi-D	mg/L		<0.0010	<0.0010

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Descripti	on	2-North In-Situ	RBP Ex-Situ
	Well ID *Station Type		QU1013D	QU1109M
			MW	MW
	Surface E	levation (m ASL)	270.68	226.897
H₂O Level (b	elow top of	casing) (m ASL)	127.68	143.032
H₂O Level be	elow top of	casing (m)	78.42	19.27
Date			28-May-24	9-Apr-24
Parameter	Units	CSR-AW		
Cd-D	mg/L		<0.000010	<0.000010
Cd-CSR	mg/L		0.000600	0.000600
Ca-D	mg/L		117	88.5
Cr-D	mg/L	0.01	<0.0010	<0.0010
Co-D	mg/L	0.009	<0.00020	<0.00020
Cu-D	mg/L		<0.00020	<0.00020
Cu-CSR	mg/L		0.0900	0.0900
Fe-D	mg/L		3.00	5.61
Hard-D	mg/L		356	266
Pb-D	mg/L		<0.00020	<0.00020
Pb-CSR	mg/L		0.160	0.110
Mg-D	mg/L		15.3	10.8
Mn-D	mg/L		0.509	0.233
Na-D	mg/L		342	343
Mo-D	mg/L	10	<0.0010	0.0020
Ni-D	mg/L		<0.0010	<0.0010
Ni-CSR	mg/L		1.50	1.50
K-D	mg/L		4.59	4.84
S-D	mg/L		192	165
Sb-D	mg/L	0.2	<0.00050	<0.00050
Se-D	mg/L	0.01	<0.00010	<0.00010
Si-D	mg/L		3.63	3.32
Sr-D	mg/L		1.29	1.09
TI-D	mg/L	0.003	<0.00010	<0.00010
Ti-D	mg/L	1	<0.0050	<0.0050
U-D	mg/L	3	<0.00010	<0.00010
V-D	mg/L		<0.0050	<0.0050
Zn-D	mg/L		<0.0050	<0.0050
Zn-CSR	mg/L		2.400	1.650

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description	on	7-South 2-Mains In-Situ	
	Well ID		QU1410	QU1410
	*Station Ty	/pe	MW	MW
	Surface Ele	evation (m ASL)	240.1	240.1
H₂O Level (b	elow top of	casing) (m ASL)	204.74	204.74
H₂O Level be	elow top of c	asing (m)	0.6	0.64
Date			18-Apr-24	14-May-24
Parameter	Units	CSR-AW		
SO4-D	mg/L	1280	1600	1800
H2SEquiv	mg/L	0.02	0.000957	0.000957
Cond-F	uS/cm		2904.6	3139.6
рН-F	pH Units		6.65	6.58
Temp-F	С		9.366	10.754
DO-F	mg/L		-0.37	-0.31
ORP-F	mV		-22.4	-31.4
Turb	NTU		34	29
Alk-T	mg/L		330	330
Acidity83	mg/L		15.3	20.8
N-D	mg/L		0.177	0.250
DOC	mg/L		1.5	1.5
Hydrox	mg/L		<1.0	<1.0
Bicarb	mg/L		400	400
Carb	mg/L		<1.0	<1.0
CI-D	mg/L	1500	3.9	3.7
F-D	mg/L		0.17	0.15
Flu-CSR	mg/L		3.000	3.000
Br-D	mg/L		<0.10	<0.10
P-D	mg/L		0.0096	0.013
Al-D	mg/L		<0.0060	<0.015
Ag-D	mg/L		<0.000040	<0.00010
Ag-CSR	mg/L		0.01500	0.01500
As-D	mg/L	0.05	0.107	0.0961
Ba-D	mg/L	10	0.0155	0.0141
B-D	mg/L	12	1.02	1.08
Be-D	mg/L	0.053	<0.00020	<0.00050
Bi-D	mg/L		<0.0020	<0.0050

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Descripti	on	7-South 2-Mains In-Situ	
	Well ID *Station Type		QU1410	QU1410
			MW	MW
	Surface E	levation (m ASL)	240.1	240.1
H₂O Level (b	elow top of	casing) (m ASL)	204.74	204.74
H ₂ O Level be	elow top of	casing (m)	0.6	0.64
Date			18-Apr-24	14-May-24
Parameter	Units	CSR-AW		
Cd-D	mg/L		<0.000020	<0.00050
Cd-CSR	mg/L		0.0006000	0.0006000
Ca-D	mg/L		554	515
Cr-D	mg/L	0.01	<0.0020	<0.0050
Co-D	mg/L	0.009	<0.00040	<0.0010
Cu-D	mg/L		<0.00040	<0.0010
Cu-CSR	mg/L		0.09000	0.09000
Fe-D	mg/L		2.68	2.26
Hard-D	mg/L		2190	2050
Pb-D	mg/L		<0.00040	<0.0010
Pb-CSR	mg/L		0.1600	0.1600
Mg-D	mg/L		195	186
Mn-D	mg/L		1.56	1.43
Na-D	mg/L		56.8	51.8
Mo-D	mg/L	10	<0.0020	<0.0050
Ni-D	mg/L		<0.0020	<0.0050
Ni-CSR	mg/L		1.500	1.500
K-D	mg/L		7.97	7.41
S-D	mg/L		707	641
Sb-D	mg/L	0.2	<0.0010	<0.0025
Se-D	mg/L	0.01	<0.00020	<0.00050
Si-D	mg/L		3.6	3.27
Sr-D	mg/L		5.3	4.59
TI-D	mg/L	0.003	<0.000020	<0.00050
Ti-D	mg/L	1	<0.010	<0.025
U-D	mg/L	3	0.00089	0.00083
V-D	mg/L		<0.010	<0.025
Zn-D	mg/L		<0.010	<0.025
Zn-CSR	mg/L		2.400	2.400

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description Well ID		7-South 2-Mains In-Situ		242 In-Situ
			QU1410	QU1410	242MW
	*Station T	· уре	MW	MW	MW
	Surface E	levation (m ASL)	240.1	240.1	290
H₂O Level (b	elow top of	casing) (m ASL)	204.74	204.74	256.5
H ₂ O Level be	elow top of	casing (m)	0.64	0.8	22.35
Date			14-May-24	17-Jun-24	13-May-24
Parameter	Units	CSR-AW	R		
SO4-D	mg/L	1280	1800	1900	28
H2SEquiv	mg/L	0.02	0.000957	0.00542	0.00776
Cond-F	uS/cm		3139.6	2825	277.1
pH-F	pH Units		6.58	6.67	6.42
Temp-F	С		10.754	10.9	8.879
DO-F	mg/L		-0.31	0.86	-0.45
ORP-F	mV		-31.4	91.2	-83.1
Turb	NTU		22	9.7	45
Alk-T	mg/L		330	330	97
Acidity83	mg/L		20.0	19.2	8.7
N-D	mg/L		0.227	0.250	0.138
DOC	mg/L		1.7	1.4	0.77
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		410	400	120
Carb	mg/L		<1.0	<1.0	<1.0
Cl-D	mg/L	1500	3.5	4.1	<1.0
F-D	mg/L		0.14	0.14	0.062
Flu-CSR	mg/L		3.000	3.000	3.00
Br-D	mg/L		<0.10	<0.10	<0.010
P-D	mg/L		0.013	0.011	0.012
Al-D	mg/L		<0.015	<0.015	0.0094
Ag-D	mg/L		<0.00010	<0.00010	0.000021
Ag-CSR	mg/L		0.01500	0.01500	0.0150
As-D	mg/L	0.05	0.0952	0.0770	0.0934
Ba-D	mg/L	10	0.0139	0.0141	0.0720
B-D	mg/L	12	1.10	1.05	0.063
Be-D	mg/L	0.053	<0.00050	<0.00050	0.00016
Bi-D	mg/L		<0.0050	<0.0050	<0.0010

Table 33 Ex-situ and In-situ Groundwater 16 Page(s)

	Description		7-South 2-Mains In-Situ		242 In-Situ
	Well ID *Station Type		QU1410	QU1410	242MW
			MW	MW	MW
	Surface E	Elevation (m ASL)	240.1	240.1	290
H₂O Level (b	elow top of	casing) (m ASL)	204.74	204.74	256.5
H₂O Level be	elow top of	casing (m)	0.64	0.8	22.35
Date			14-May-24	17-Jun-24	13-May-24
Parameter	Units	CSR-AW	R		
Cd-D	mg/L		<0.000050	<0.000050	0.000174
Cd-CSR	mg/L		0.0006000	0.0006000	0.000500
Ca-D	mg/L		519	483	40.2
Cr-D	mg/L	0.01	<0.0050	<0.0050	<0.0010
Co-D	mg/L	0.009	<0.0010	<0.0010	0.00063
Cu-D	mg/L		<0.0010	<0.0010	0.00085
Cu-CSR	mg/L		0.09000	0.09000	0.0500
Fe-D	mg/L		2.28	2.35	11.7
Hard-D	mg/L		2060	1870	114
Pb-D	mg/L		<0.0010	<0.0010	0.00022
Pb-CSR	mg/L		0.1600	0.1600	0.0600
Mg-D	mg/L		185	162	3.20
Mn-D	mg/L		1.40	1.48	0.447
Na-D	mg/L		51.6	48.5	2.49
Mo-D	mg/L	10	<0.0050	<0.0050	<0.0010
Ni-D	mg/L		<0.0050	<0.0050	<0.0010
Ni-CSR	mg/L		1.500	1.500	0.650
K-D	mg/L		7.33	7.29	0.441
S-D	mg/L		632	567	9.2
Sb-D	mg/L	0.2	<0.0025	<0.0025	<0.00050
Se-D	mg/L	0.01	<0.00050	<0.00050	0.00011
Si-D	mg/L		3.37	3.04	3.49
Sr-D	mg/L		4.52	4.43	0.0609
TI-D	mg/L	0.003	<0.000050	<0.000050	0.000038
Ti-D	mg/L	1	<0.025	<0.025	<0.0050
U-D	mg/L	3	0.00085	0.00097	0.00020
V-D	mg/L		<0.025	<0.025	<0.0050
Zn-D	mg/L		<0.025	<0.025	<0.0050
Zn-CSR	mg/L		2.400	2.400	0.900

Table 34 In-situ Minewater 18 Page(s)

	Description Well ID		2-North In-Situ	5M#2	5M#2
	*Station	a Tyrna	SW#2 MW	MW	MW
Data	Station	туре			4-Jun-24
Parameter	Units	CSR-AW	16-Apr-24	7-May-24	4-Jun-24
			470	1.00	160
SO4-D	mg/L	1280	170	160	160
H2SEquiv	mg/L	0.02	0.0223	0.0128	0.00957
Cond-F	uS/cm		1194.8	1325.8	1243
pH-F 	pH Units	<u> </u>	7.41	7.13	7.55
Temp-F	С		14.514	10.789	10.9
DO-F	mg/L				
ORP-F	mV				
Turb	NTU		3.8	4.9	3.8
Alk-T	mg/L		550	550	550
Acidity83	mg/L		1.2	9.4	<1.0
N-D	mg/L		0.118	0.488	0.260
DOC	mg/L		1.0	1.0	0.60
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		670	670	680
Carb	mg/L		<1.0	<1.0	<1.0
Cl-D	mg/L	1500	6.7	7.4	7.6
F-D	mg/L		0.052	0.051	<0.050
Flu-CSR	mg/L		3.00	3.00	3.00
Br-D	mg/L		0.014	<0.010	0.015
P-D	mg/L		<0.0030	0.0031	0.0034
Al-D	mg/L		<0.0030	<0.0031	<0.0034
Ag-D	mg/L		<0.00020	<0.000020	<0.000020
Ag-CSR	mg/L		0.0150	0.0150	0.0150
As-D	mg/L	0.05	0.00735	0.0130	0.00740
		10			-
Ba-D	mg/L	12	0.0303	0.0297	0.0299
B-D	mg/L		0.919	0.876	0.868
Be-D	mg/L	0.053	<0.00010	<0.00010	<0.00010
Bi-D	mg/L		<0.0010	<0.0010	<0.0010
Cd-D	mg/L		<0.000010	<0.00010	<0.000010
Cd-CSR	mg/L		0.000600	0.000600	0.000600
Ca-D	mg/L		66.0	64.8	69.1
Cr-D	mg/L	0.01	<0.0010	<0.0010	<0.0010
Co-D	mg/L	0.009	<0.00020	<0.00020	<0.00020
Cu-D	mg/L		<0.00020	<0.00020	<0.00020
Cu-CSR	mg/L		0.0800	0.0800	0.0800
Fe-D	mg/L		0.640	0.670	0.709
Hard-D	mg/L		189	186	197
Pb-D	mg/L		<0.00020	<0.00020	<0.00020
Pb-CSR	mg/L		0.0600	0.0600	0.0600
Mg-D	mg/L		5.87	5.79	5.92
Mn-D	mg/L		0.146	0.135	0.139
Hg-D	mg/L	0.001			
Na-D	mg/L		245	230	239
Mo-D	mg/L	10	<0.0010	<0.0010	<0.0010
Ni-D	mg/L		<0.0010	<0.0010	<0.0010
Ni-CSR	mg/L		1.50	1.50	1.50
K-D	mg/L		2.69	2.56	2.68

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri Well ID	-	2-North In-Situ 5M#2	5M#2	5M#2
	*Statio		MW	MW	MW
Date		, , , ,	16-Apr-24	7-May-24	4-Jun-24
Parameter	Units	CSR-AW	20 7.0. 21	, way = 1	
S-D	mg/L	OOK AII	62.4	57.8	56.8
Sb-D	mg/L	0.2	<0.00050	<0.00050	<0.00050
Se-D	mg/L	0.01	<0.00030	<0.00030	<0.00010
Si-D	mg/L	0.01	3.49	3.38	3.32
Sr-D	mg/L		0.742	0.747	0.777
TI-D	mg/L	0.003			
Ti-D		0.003	<0.000010	<0.00010 <0.0050	<0.000010
ป-D	mg/L	3	<0.0050		<0.0050
	mg/L	5	<0.00010	<0.00010	<0.00010
V-D	mg/L		<0.0050	<0.0050	<0.0050
Zn-D	mg/L		<0.0050	<0.0050	<0.0050
Zn-CSR	mg/L		0.900	0.900	0.900
N-NH3	mg/L		0.096	0.093	0.10
NH3-CSR	mg/L		18.5	18.5	11.3
Al-T	mg/L		<0.0030	0.0382	<0.0030
As-T	mg/L		0.00684	0.00680	0.00686
В-Т	mg/L		0.941	0.861	0.794
Be-T	mg/L		<0.00010	<0.00010	<0.00010
Bi-T	mg/L		<0.0010	<0.0010	<0.0010
Ca-T	mg/L		61.8	61.5	60.1
Cd-T	mg/L		<0.000010	<0.000010	<0.000010
Co-T	mg/L		<0.00020	<0.00020	0.00022
Cr-T	mg/L		<0.0010	<0.0010	<0.0010
Cu-T	mg/L		0.00293	0.00146	0.00519
Fe-T	mg/L		0.628	0.635	0.841
Hard-T	mg/L		178	176	172
К-Т	mg/L		2.53	2.51	2.37
Li-T	mg/L		0.0072	0.0065	0.0057
Mg-T	mg/L		5.74	5.49	5.27
Mn-T	mg/L		0.136	0.138	0.123
Mo-T	mg/L		<0.0010	<0.0010	<0.0010
N-T	mg/L		10.0020	10.0020	10.0020
Na-T	mg/L		227	232	209
Ni-T	mg/L		<0.0010	<0.0010	<0.0010
P-T	mg/L		10.0010	-0.0010	10.0010
Pb-T	mg/L		0.00036	<0.00020	0.00061
S-T	mg/L		57.8	56.0	50.5
Sb-T	mg/L		<0.00050	<0.00050	<0.00050
				<0.00030	
Se-T Si-T	mg/L		<0.00010	2.98	<0.00010
	mg/L		3.32		2.94
Sn-T	mg/L		<0.0050	<0.0050	<0.0050
Sr-T	mg/L		0.676	0.656	0.649
Ti-T	mg/L		<0.0050	<0.0050	<0.0050
TI-T	mg/L		<0.000010	<0.000010	<0.000010
U-T	mg/L		<0.00010	<0.00010	<0.00010
V-T	mg/L		<0.0050	<0.0050	<0.0050
Zn-T	mg/L		<0.0050	<0.0050	<0.0050
Zr-T	mg/L		<0.00010	<0.00010	<0.00010

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Description		2-North In-Sit	u	
	Well ID	-	1M2N	1M2N	1M2N
	*Statio	n Type	MW	MW	MW
Date			16-Apr-24	7-May-24	4-Jun-24
Parameter	Units	CSR-AW		,	
SO4-D	mg/L	1280	410	470	460
H2SEquiv	mg/L	0.02	0.0946	0.0787	0.0489
Cond-F	uS/cm		1627.8	1821.7	1765
pH-F	pH Units	<u> </u>	7.06	6.74	7.14
Temp-F	С		14.796	13.994	10.7
DO-F	mg/L		14.750	13.334	10.7
ORP-F	mV				
Turb	NTU		49	47	39
Alk-T	_		480	480	490
	mg/L				
Acidity83	mg/L		10.7	13.4	8.6
N-D	mg/L		0.426	0.307	0.327
DOC	mg/L		1.3	1.1	0.67
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		580	590	600
Carb	mg/L		<1.0	<1.0	<1.0
CI-D	mg/L	1500	9.0	10	12
F-D	mg/L		0.11	0.11	0.12
Flu-CSR	mg/L		3.00	3.00	3.00
Br-D	mg/L		<0.10	<0.10	0.025
P-D	mg/L		<0.0030	0.0043	<0.0030
Al-D	mg/L		<0.0030	<0.0030	<0.0030
Ag-D	mg/L		<0.000020	<0.000020	<0.000020
Ag-CSR	mg/L		0.0150	0.0150	0.0150
As-D	mg/L	0.05	0.00632	0.00585	0.00657
Ba-D	mg/L	10	0.0242	0.0251	0.0241
B-D	mg/L	12	0.949	0.971	0.973
Be-D	mg/L	0.053	<0.00010	<0.00010	<0.00010
Bi-D	mg/L		<0.0010	<0.0010	<0.0010
Cd-D	mg/L		<0.000010	<0.000010	<0.00010
Cd-CSR	mg/L		0.000600	0.000600	0.000600
Ca-D	mg/L		108	109	120
Cr-D	mg/L	0.01	<0.0010	<0.0010	<0.0010
Co-D	mg/L	0.009	<0.00020	<0.00020	<0.00020
Cu-D	mg/L	0.003	<0.00020	<0.00020	<0.00020
Cu-CSR	mg/L		0.0900	0.0900	0.0900
Fe-D	mg/L		3.46	3.60	3.72
					353
Hard-D	mg/L		322	325	
Pb-D	mg/L		<0.00020	<0.00020	<0.00020
Pb-CSR	mg/L		0.160	0.160	0.160
Mg-D	mg/L		12.6	12.5	13.2
Mn-D	mg/L		0.402	0.390	0.419
Hg-D	mg/L	0.001			
Na-D	mg/L		293	269	292
Mo-D	mg/L	10	<0.0010	<0.0010	<0.0010
Ni-D	mg/L		<0.0010	<0.0010	<0.0010
Ni-CSR	mg/L		1.50	1.50	1.50
K-D	mg/L		4.43	4.30	4.53

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ntion	2-North In-Site	<u> </u>	
	Well ID		1M2N	1M2N	1M2N
	*Statio		MW	MW	MW
Data		птуре	1	I	4-Jun-24
Parameter	Units	CSR-AW	16-Apr-24	7-May-24	4-Jun-24
		CSR-AW	100	150	172
S-D	mg/L	0.0	169	158	172
Sb-D	mg/L	0.2	<0.00050	<0.00050	<0.00050
Se-D	mg/L	0.01	<0.00010	<0.00010	<0.00010
Si-D	mg/L		3.57	3.57	3.51
Sr-D	mg/L		1.16	1.21	1.30
TI-D	mg/L	0.003	<0.000010	<0.000010	<0.000010
Ti-D	mg/L	1	<0.0050	<0.0050	<0.0050
U-D	mg/L	3	<0.00010	<0.00010	<0.00010
V-D	mg/L		<0.0050	<0.0050	<0.0050
Zn-D	mg/L		<0.0050	<0.0050	<0.0050
Zn-CSR	mg/L		2.400	2.400	2.400
N-NH3	mg/L		0.22	0.23	0.23
NH3-CSR	mg/L		18.5	18.4	18.5
Al-T	mg/L		<0.0030	<0.0030	<0.0030
As-T	mg/L		0.00605	0.00596	0.00639
B-T	mg/L		0.983	0.848	0.854
Be-T	mg/L		<0.00010	<0.00010	<0.00010
Bi-T	mg/L		<0.0010	<0.0010	<0.0010
Ca-T	mg/L		104	104	101
Cd-T	mg/L		<0.000010	<0.00010	<0.00010
Co-T	mg/L		<0.00020	<0.00020	<0.00020
Cr-T	mg/L		<0.0010	<0.0010	<0.0010
Cu-T	mg/L		0.00084	0.00115	0.00104
Fe-T	mg/L		3.35	3.28	3.21
Hard-T	mg/L		310	306	300
K-T	mg/L		4.26	4.10	3.91
Li-T	mg/L		0.0143	0.0125	0.0127
Mg-T	mg/L		12.4	11.4	11.6
Mn-T	mg/L		0.379	0.372	0.360
Mo-T	mg/L		<0.0010	<0.0010	<0.0010
N-T	mg/L		10.0020	10.0020	10.0020
Na-T	mg/L		275	267	249
Ni-T	mg/L		<0.0010	<0.0010	<0.0010
P-T	mg/L		2.5520	2.0020	3.0020
Pb-T	mg/L		<0.00020	<0.00020	<0.00020
S-T	mg/L		162	155	149
Sb-T	mg/L		<0.00050	<0.00050	<0.00050
Se-T	mg/L		<0.00010	<0.00030	<0.00030
Si-T	mg/L		3.39	3.04	3.00
Sn-T	mg/L		<0.0050	<0.0050	<0.0050
Sr-T	mg/L		1.09	1.04	1.04
Ti-T			<0.0050	<0.0050	<0.0050
	mg/L		+		
TI-T	mg/L		<0.00010	<0.000010	<0.000010
U-T	mg/L		<0.00010	<0.00010	<0.00010
V-T	mg/L		<0.0050	<0.0050	<0.0050
Zn-T	mg/L		<0.0050	<0.0050	<0.0050
Zr-T	mg/L		<0.00010	<0.00010	<0.00010

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	:2-North In-S	itu	
	Well ID		3M2N 3M2N		3M2N
	*Statio		MW	MW	MW
Date			23-Apr-24	24-May-24	18-Jun-24
Parameter	Units	CSR-AW			
SO4-D	mg/L	1280	700	690	730
H2SEquiv	mg/L	0.02	700	0.000957	0.000957
Cond-F	uS/cm	0.02	1953	1984	2050
pH-F	pH Units	•	7.25	7.21	7.22
Temp-F	C	•	12.3	11.3	11.5
DO-F	mg/L		12.3	11.5	11.5
ORP-F	mV				
Turb	NTU		2.4	5.4	4.7
Alk-T			370	380	380
	mg/L		4.7	+	
Acidity83	mg/L			3.0	2.7
N-D	mg/L		0.240	0.163	0.442
DOC	mg/L		0.99	0.92	0.78
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		450	460	470
Carb	mg/L		<1.0	<1.0	<1.0
CI-D	mg/L	1500	2.3	2.2	2.8
F-D	mg/L		0.11	0.11	0.11
Flu-CSR	mg/L		3.00	3.00	3.00
Br-D	mg/L		<0.10	<0.10	<0.10
P-D	mg/L		<0.0030	<0.0030	<0.0030
Al-D	mg/L		<0.0030	<0.0030	<0.0030
Ag-D	mg/L		<0.000020	<0.000020	<0.000020
Ag-CSR	mg/L		0.0150	0.0150	0.0150
As-D	mg/L	0.05	0.00030	0.00031	0.00030
Ba-D	mg/L	10	0.0131	0.0136	0.0138
B-D	mg/L	12	0.750	0.747	0.824
Be-D	mg/L	0.053	<0.00010	<0.00010	<0.00010
Bi-D	mg/L		<0.0010	<0.0010	<0.0010
Cd-D	mg/L		<0.000010	<0.000010	<0.000010
Cd-CSR	mg/L		0.000600	0.000600	0.000600
Ca-D	mg/L		132	138	127
Cr-D	mg/L	0.01	<0.0010	<0.0010	<0.0010
Co-D	mg/L	0.009	0.00028	0.00036	0.00035
Cu-D	mg/L		<0.00020	<0.00020	<0.00020
Cu-CSR	mg/L		0.0900	0.0900	0.0900
Fe-D	mg/L		0.0486	0.142	0.0681
Hard-D	mg/L		401	420	392
Pb-D	mg/L		<0.00020	<0.00020	<0.00020
Pb-CSR	mg/L		0.160	0.160	0.160
Mg-D	mg/L		17.1	18.5	18.1
Mn-D	mg/L		0.158	0.170	0.161
Hg-D	mg/L	0.001	3.130	3.170	3.101
Na-D	mg/L	0.001	289	321	300
Mo-D	mg/L	10	<0.0010	<0.0010	<0.0010
	_	10	+		
Ni-D	mg/L		<0.0010	<0.0010	<0.0010
Ni-CSR	mg/L		1.50	1.50	1.50
K-D	mg/L		3.14	3.57	3.36

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	2-North In-S	itu	
	Well ID		3M2N 3M2N		3M2N
	*Statio	n Type	MW	MW	MW
Date			23-Apr-24	24-May-24	18-Jun-24
Parameter	Units	CSR-AW			
S-D	mg/L		244	255	236
Sb-D	mg/L	0.2	<0.00050	<0.00050	<0.00050
Se-D	mg/L	0.01	<0.00010	<0.00010	<0.00010
Si-D	mg/L		3.04	3.32	2.89
Sr-D	mg/L		1.41	1.47	1.40
TI-D	mg/L	0.003	<0.00010	<0.000010	<0.000010
Ti-D	mg/L	1	<0.0050	<0.0050	<0.0050
U-D	mg/L	3	<0.00010	<0.00010	<0.00010
V-D	mg/L	3	<0.0050	<0.0050	<0.0050
ט-ע Zn-D	_				<0.0050
	mg/L		<0.0050	<0.0050	
Zn-CSR	mg/L		2.400	2.400	2.400
N-NH3	mg/L		0.11	0.16	0.11
NH3-CSR	mg/L		18.5	18.5	18.5
Al-T	mg/L		0.0031	<0.0030	0.0031
As-T	mg/L		0.00036	0.00035	0.00036
В-Т	mg/L		0.657	0.619	0.785
Be-T	mg/L		<0.00010	<0.00010	<0.00010
Bi-T	mg/L		<0.0010	<0.0010	<0.0010
Ca-T	mg/L		121	111	124
Cd-T	mg/L		<0.000010	<0.000010	<0.000010
Co-T	mg/L		0.00026	0.00028	0.00033
Cr-T	mg/L		<0.0010	<0.0010	<0.0010
Cu-T	mg/L		<0.00050	<0.00050	<0.00050
Fe-T	mg/L		0.321	0.415	0.445
Hard-T	mg/L		363	343	379
K-T	mg/L		2.81	2.85	3.24
Li-T	mg/L		0.0137	0.0149	0.0159
Mg-T	mg/L		15.1	16.2	17.2
Mn-T	mg/L		0.140	0.147	0.153
Mo-T	mg/L		<0.0010	<0.0010	<0.0010
N-T	mg/L		10.0020	10.0020	1010020
Na-T	mg/L		260	261	285
Ni-T	mg/L		<0.0010	<0.0010	<0.0010
P-T	mg/L		10.0010	-0.0010	10.0010
Pb-T	mg/L		<0.00020	<0.00020	<0.00020
S-T	mg/L		206	202	226
Sb-T					
	mg/L		<0.00050	<0.00050	<0.00050
Se-T	mg/L		<0.00010	<0.00010	<0.00010
Si-T	mg/L		2.67	2.70	2.93
Sn-T	mg/L		<0.0050	<0.0050	<0.0050
Sr-T	mg/L		1.23	1.13	1.33
Ti-T	mg/L		<0.0050	<0.0050	<0.0050
TI-T	mg/L		<0.000010	<0.000010	<0.000010
U-T	mg/L		<0.00010	<0.00010	<0.00010
V-T	mg/L		<0.0050	<0.0050	<0.0050
Zn-T	mg/L		<0.0050	<0.0050	<0.0050
Zr-T	mg/L		<0.00010	<0.00010	<0.00010

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Description		2 / 3 South I	n-Situ		
	Well ID		INF	INF INF		
	*Statio	n Type	MW	MW	MW	
Date			2-Apr-24	6-May-24	3-Jun-24	
Parameter	Units	CSR-AW	•	,		
SO4-D	mg/L	1280	620	610	630	
H2SEquiv	mg/L	0.02	0.000957	0.0255	0.000957	
Cond-F	uS/cm		1450	1581	1590	
pH-F	pH Units	<u> </u>	7.07	6.46	7.08	
Temp-F	C	-	9.5	12.7	9.2	
DO-F	mg/L		3.3	12.7	3.2	
ORP-F	mV					
Turb	NTU			46		
Alk-T	mg/L		240	250	250	
Acidity83	mg/L		4.9	10.6	8.5	
N-D	mg/L		1			
DOC	mg/L					
Hydrox	mg/L		<1.0	<1.0	<1.0	
Bicarb	mg/L		290	300	310	
Carb	mg/L		<1.0	<1.0	<1.0	
CI-D	mg/L	1500		<1.0		
F-D	mg/L			0.13		
Flu-CSR	mg/L		3.00	3.00	3.00	
Br-D	mg/L			<0.010		
P-D	mg/L					
Al-D	mg/L		<0.015	<0.0030	<0.0030	
Ag-D	mg/L		<0.00010	<0.000020	<0.000020	
Ag-CSR	mg/L		0.0150	0.0150	0.0150	
As-D	mg/L	0.05	0.00209	0.00351	0.00361	
Ba-D	mg/L	10	0.0197	0.0202	0.0190	
B-D	mg/L	12	0.63	0.700	0.654	
Be-D	mg/L	0.053	<0.00050	<0.00010	<0.00010	
Bi-D	mg/L		<0.0050	<0.0010	<0.0010	
Cd-D	mg/L		<0.000050	<0.000010	<0.000010	
Cd-CSR	mg/L		0.000600	0.000600	0.000600	
Ca-D	mg/L		236	225	249	
Cr-D	mg/L	0.01	<0.0050	<0.0010	<0.0010	
Co-D	mg/L	0.009	<0.0010	0.00060	0.00059	
Cu-D	mg/L		<0.0010	<0.00020	<0.00020	
Cu-CSR	mg/L		0.0900	0.0900	0.0900	
Fe-D	mg/L		2.37	4.47	2.78	
Hard-D	mg/L		654	633	694	
Pb-D	mg/L		<0.0010	<0.00020	<0.00020	
Pb-CSR	mg/L		0.160	0.160	0.160	
			15.6	17.6		
Mg-D Mn-D	mg/L mg/L		0.302	0.357	17.3 0.374	
	<u> </u>	0.001	0.302	0.357	0.374	
Hg-D	mg/L	0.001	07.0	07.3	105	
Na-D	mg/L		97.9	97.2	105	
Mo-D	mg/L	10	<0.0050	<0.0010	<0.0010	
Ni-D	mg/L		<0.0050	0.0011	0.0011	
Ni-CSR	mg/L		1.50	1.50	1.50	
K-D	mg/L		1.79	1.93	1.99	

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	:2 / 3 South Ir	n-Situ	
	Well ID	-	INF	INF	INF
	*Statio	n Type	MW	MW	MW
Date		71	2-Apr-24	6-May-24	3-Jun-24
Parameter	Units	CSR-AW		•	
S-D	mg/L		194	216	228
Sb-D	mg/L	0.2	<0.0025	<0.00050	<0.00050
Se-D	mg/L	0.01	<0.00050	0.00058	0.00024
Si-D	mg/L		2.74	3.07	2.99
Sr-D	mg/L		1.91	2.21	2.43
TI-D	mg/L	0.003	<0.000050	<0.000010	<0.000010
Ti-D	mg/L	1	<0.025	<0.0050	<0.0050
U-D	mg/L	3	<0.00050	<0.00010	<0.00010
V-D	mg/L		<0.025	<0.0050	<0.0050
Zn-D	mg/L		<0.025	<0.0050	<0.0050
Zn-CSR	mg/L		2.400	2.400	2.400
N-NH3	mg/L		0.043	0.045	0.058
NH3-CSR	mg/L		18.5	18.4	18.5
Al-T	mg/L		0.0058	<0.0030	<0.0030
As-T	mg/L		0.00243	0.00350	0.00347
В-Т	mg/L		0.572	0.566	0.606
Be-T	mg/L		<0.00010	<0.00010	<0.00010
Bi-T	mg/L		<0.0010	<0.0010	<0.0010
Са-Т	mg/L		202	214	215
Cd-T	mg/L		<0.000010	<0.000010	<0.000010
Co-T	mg/L		0.00068	0.00053	0.00057
Cr-T	mg/L		<0.0010	<0.0010	<0.0010
Cu-T	mg/L		0.00087	<0.00050	<0.00050
Fe-T	mg/L		2.06	4.07	2.43
Hard-T	mg/L		563	600	601
K-T	mg/L		1.66	1.74	1.83
Li-T	mg/L		0.0184	0.0190	0.0195
Mg-T	mg/L		14.4	15.9	15.6
Mn-T	mg/L		0.267	0.321	0.351
Mo-T	mg/L		<0.0010	<0.0010	<0.0010
N-T	mg/L			010000	0.000
Na-T	mg/L		87.1	88.6	89.6
Ni-T	mg/L		0.0012	<0.0010	<0.0010
P-T	mg/L		<0.0030	<0.0030	<0.0030
Pb-T	mg/L		<0.00020	<0.00020	<0.00020
S-T	mg/L		207	193	207
Sb-T	mg/L		<0.00050	<0.00050	<0.00050
Se-T	mg/L		<0.00010	<0.00010	<0.00010
Si-T	mg/L		2.72	2.81	2.68
Sn-T	mg/L		<0.0050	<0.0050	<0.0050
Sr-T	mg/L		1.92	1.90	2.23
Ti-T	mg/L		<0.0050	<0.0050	<0.0050
TI-T	mg/L		<0.00010	<0.00010	<0.000010
U-T	+		<0.00010	<0.00010	<0.00010
V-T	mg/L		<0.0050	<0.00010	<0.0050
	mg/L				
Zn-T	mg/L		<0.0050	<0.0050	<0.0050
Zr-T	mg/L		<0.00010	<0.00010	<0.00010

Table 34 In-situ Minewater 18 Page(s)

	Description Well ID		7-South Potal	Sump In-Situ	
			7SPS	7SPS	7SPS
	*Statio	n Type	MW	MW	MW
Date			2-Apr-24	6-May-24	3-Jun-24
Parameter	Units	CSR-AW		,	
SO4-D	mg/L	1280	200	240	220
H2SEquiv	mg/L	0.02			
Cond-F	uS/cm		554	691	650
pH-F	pH Units	.	6.88	6.65	7.31
Temp-F	С	<u></u>	9.5	11.5	16.1
DO-F	mg/L		3.3	11.5	10.1
ORP-F	mV				
Turb	NTU				35
Alk-T	mg/L		64	110	120
Acidity83	mg/L		2.5	4.8	2.0
N-D	mg/L				
DOC	mg/L		1.5		
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		78	140	150
Carb	mg/L		<1.0	<1.0	<1.0
Cl-D	mg/L	1500			
F-D	mg/L				
Flu-CSR	mg/L		3.00	3.00	3.00
Br-D	mg/L				
P-D	mg/L				
Al-D	mg/L		<0.015	<0.0030	0.0043
Ag-D	mg/L		<0.00010	<0.000020	<0.000020
Ag-CSR	mg/L		0.0150	0.0150	0.0150
As-D	mg/L	0.05	0.00054	0.00045	0.00048
Ba-D	mg/L	10	0.0140	0.0135	0.0171
B-D	mg/L	12	<0.25	0.104	0.097
Be-D	mg/L	0.053	<0.00050	<0.00010	<0.00010
Bi-D	mg/L		<0.0050	<0.0010	<0.0010
Cd-D	mg/L		<0.000050	0.000010	<0.00010
Cd-CSR	mg/L		0.000600	0.000600	0.000600
Ca-D	mg/L		73.7	90.5	97.0
Cr-D	mg/L	0.01	<0.0050	<0.0010	<0.0010
Co-D	mg/L	0.009	0.0044	0.00258	0.00132
Cu-D	mg/L	0.000	0.0013	0.00238	0.00132
Cu-CSR	mg/L		0.0900	0.00001	0.0900
Fe-D	mg/L		2.46	0.569	0.0900
Hard-D					
	mg/L		253	322	331
Pb-D	mg/L		<0.0010	<0.00020	<0.00020
Pb-CSR	mg/L		0.110	0.160	0.160
Mg-D	mg/L		16.9	23.3	21.7
Mn-D	mg/L		0.192	0.186	0.112
Hg-D	mg/L	0.001			
Na-D	mg/L		5.26	8.56	9.07
Mo-D	mg/L	10	<0.0050	<0.0010	<0.0010
Ni-D	mg/L		0.0087	0.0057	0.0035
Ni-CSR	mg/L		1.50	1.50	1.50
K-D	mg/L		0.66	0.780	0.824

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Description		:7-South Potal	Sump In-Situ	
	Well ID		7SPS 7SPS		7SPS
	*Statio	n Tvpe	MW	MW	MW
Date		,,	2-Apr-24	6-May-24	3-Jun-24
Parameter	Units	CSR-AW			
S-D	mg/L		59	82.8	76.3
Sb-D	mg/L	0.2	<0.0025	<0.00050	<0.00050
Se-D	mg/L	0.01	<0.00050	<0.00010	<0.00010
Si-D	mg/L	0.01	4.60	4.91	4.46
Sr-D	mg/L		0.239	0.359	0.397
TI-D	mg/L	0.003	<0.000050	<0.00010	<0.000010
Ti-D	mg/L	1	<0.025	<0.0050	<0.0050
U-D	mg/L	3	<0.0050	0.00025	0.00031
V-D	mg/L	3	<0.025	<0.0050	<0.0051
Zn-D				0.0030	
	mg/L		<0.025		<0.0050
Zn-CSR	mg/L		1.650	2.400	2.400
N-NH3	mg/L		40.4	40.4	40.5
NH3-CSR	mg/L		18.4	18.4	18.5
Al-T	mg/L		0.157	0.0700	0.0557
As-T	mg/L		0.00137	0.00124	0.00141
В-Т	mg/L		0.072	0.108	0.072
Be-T	mg/L		<0.00010	<0.00010	<0.00010
Bi-T	mg/L		<0.0010	<0.0010	<0.0010
Ca-T	mg/L		68.1	88.6	83.5
Cd-T	mg/L		0.000025	0.000014	<0.000010
Co-T	mg/L		0.00420	0.00251	0.00121
Cr-T	mg/L		<0.0010	<0.0010	<0.0010
Cu-T	mg/L		0.00305	0.00112	0.00108
Fe-T	mg/L		4.82	4.03	2.63
Hard-T	mg/L		240	313	283
K-T	mg/L		0.664	0.697	0.713
Li-T	mg/L		<0.0020	<0.0020	<0.0020
Mg-T	mg/L		17.0	22.2	18.2
Mn-T	mg/L		0.199	0.178	0.0945
Mo-T	mg/L		<0.0010	<0.0010	<0.0010
N-T	mg/L				
Na-T	mg/L		4.84	8.41	7.70
Ni-T	mg/L		0.0088	0.0055	0.0031
P-T	mg/L				
Pb-T	mg/L		<0.00020	<0.00020	<0.00020
S-T	mg/L		64.7	78.8	66.4
Sb-T	mg/L		<0.00050	<0.00050	<0.00050
Se-T	mg/L		<0.00010	<0.00010	<0.00010
Si-T	mg/L		5.10	4.85	4.26
Sn-T	mg/L		<0.0050	<0.0050	<0.0050
Sr-T	mg/L		0.251	0.344	0.325
Ti-T	mg/L		<0.0050	<0.0050	<0.0050
TI-T	mg/L		<0.00010	<0.00010	<0.00010
U-T	_		0.00010	0.00023	0.00026
V-T	mg/L				
	mg/L		<0.0050	<0.0050	<0.0050
Zn-T	mg/L		0.0166	0.0106	<0.0050
Zr-T	mg/L		<0.00010	<0.00010	<0.00010

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Description		In-situ 7-South Underground Sump			
	Well ID		1M7SA5	1M7SA5	1M7SA5	
	*Statio		MW	MW	MW	
Date	Jialio	Пуре	23-Apr-24	24-May-24	18-Jun-24	
Parameter	Units	CCD AW	25-Apr-24	24-IVIdy-24	10-Jun-24	
		CSR-AW	170	160	450	
SO4-D	mg/L	1280	170	160	150	
H2SEquiv	mg/L	0.02	0.000957	0.000957	0.000957	
Cond-F	uS/cm		530	521	553	
pH-F	pH Unit	S	7.87	7.77	8.13	
Temp-F	C		7	7.3	8.2	
DO-F	mg/L					
ORP-F	mV					
Turb	NTU		0.91	1.8	1.5	
Alk-T	mg/L		97	100	130	
Acidity83	mg/L		1.5	1.5	<1.0	
N-D	mg/L		0.189	0.223	0.185	
DOC	mg/L		1.3	1.3	1.3	
Hydrox	mg/L		<1.0	<1.0	<1.0	
Bicarb	mg/L		120	120	160	
Carb	mg/L		<1.0	<1.0	<1.0	
CI-D	mg/L	1500	<1.0	6.0	<1.0	
F-D	mg/L		0.22	0.25	0.32	
Flu-CSR	mg/L		3.00	3.00	3.00	
Br-D	mg/L		<0.010	<0.010	0.019	
P-D	mg/L		0.0040	0.0052	0.0038	
Al-D	mg/L		0.0042	0.0031	0.0051	
Ag-D	mg/L		<0.000020	<0.000020	<0.000020	
Ag-CSR	mg/L		0.0150	0.0150	0.0150	
As-D	mg/L	0.05	0.0333	0.0355	0.0131	
Ba-D	mg/L	10	0.0617	0.0661	0.107	
B-D	mg/L	12	0.257	0.279	0.443	
Be-D	mg/L	0.053	<0.00010	<0.00010	<0.00010	
Bi-D	mg/L	0.000	<0.0010	<0.0010	<0.0010	
Cd-D	mg/L		<0.000010	<0.000010	<0.000010	
Cd-CSR	mg/L		0.000600	0.000600	0.000600	
Ca-D	mg/L		77.9	78.7	67.1	
Cr-D	mg/L	0.01	<0.0010	<0.0010	<0.0010	
Co-D	mg/L	0.009	0.00186	0.00147	0.00106	
Cu-D	mg/L	3.555	0.00027	0.00027	0.00043	
Cu-CSR	mg/L		0.0900	0.0900	0.0900	
Fe-D	mg/L		0.0183	0.0217	0.0438	
Hard-D	mg/L		255	262	233	
Pb-D	mg/L		<0.00020	<0.00020	<0.00020	
Pb-CSR	mg/L		0.110	0.110	0.110	
Mg-D	mg/L		14.7	15.8	15.8	
Mn-D	mg/L		0.0782	0.0664	0.0564	
	_	0.001	0.0762	0.0004	0.0304	
Hg-D	mg/L	0.001	0.64	11 1	17 5	
Na-D	mg/L	10	9.64	11.1	17.5	
Mo-D	mg/L	10	<0.0010	<0.0010	<0.0010	
Ni-D	mg/L		0.0046	0.0038	0.0038	
Ni-CSR	mg/L		1.50	1.50	1.50	
K-D	mg/L		1.24	1.55	1.80	

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	In-situ 7-South Underground Sump			
	Well ID		1M7SA5	1M7SA5	1M7SA5	
	*Statio		MW	MW	MW	
Date		Гурс	23-Apr-24	24-May-24	18-Jun-24	
Parameter	Units	CSR-AW	23-Apr-24	24-IVIAY-24	10-3411-24	
S-D		CSK-AVV	60.3	61.0	49.3	
Sb-D	mg/L	0.2	<0.00050		<0.00050	
	mg/L		+	<0.00050		
Se-D	mg/L	0.01	<0.00010	<0.00010	0.00026	
Si-D	mg/L		3.54	3.88	3.89	
Sr-D	mg/L	0.000	0.447	0.445	0.534	
TI-D	mg/L	0.003	0.000023	0.000020	<0.000010	
Ti-D	mg/L	1	<0.0050	<0.0050	<0.0050	
U-D	mg/L	3	<0.00010	<0.00010	<0.00010	
V-D	mg/L		<0.0050	<0.0050	<0.0050	
Zn-D	mg/L		<0.0050	<0.0050	<0.0050	
Zn-CSR	mg/L		1.650	1.650	1.650	
N-NH3	mg/L		0.027	0.036	<0.015	
NH3-CSR	mg/L		11.3	11.3	3.70	
Al-T	mg/L		0.0034	0.0116	0.0137	
As-T	mg/L		0.0361	0.0391	0.0162	
В-Т	mg/L		0.208	0.221	0.364	
Be-T	mg/L		<0.00010	<0.00010	<0.00010	
Bi-T	mg/L		<0.0010	<0.0010	<0.0010	
Ca-T	mg/L		67.7	63.6	57.2	
Cd-T	mg/L		<0.000010	<0.00010	<0.000010	
Co-T	mg/L		0.00165	0.00113	0.00098	
Cr-T	mg/L		<0.0010	<0.0010	<0.0010	
Cu-T	mg/L		<0.00050	<0.00050	0.00060	
Fe-T	mg/L		0.097	0.234	0.232	
Hard-T	mg/L		223	210	199	
K-T	mg/L		1.11	1.17	1.53	
Li-T	mg/L		0.0157	0.0188	0.0247	
Mg-T	mg/L		13.0	12.4	13.7	
Mn-T	mg/L		0.0685	0.0526	0.0505	
Mo-T	mg/L		<0.0010	<0.0010	<0.0010	
N-T	mg/L		10.10020	10.0020	10.0020	
Na-T	mg/L		8.66	8.83	14.9	
Ni-T	mg/L		0.0041	0.0030	0.0033	
P-T	mg/L		3.00 11	5.5550	3.0033	
Pb-T	mg/L		<0.00020	<0.00020	<0.00020	
S-T	mg/L		48.8	47.7	42.6	
Sb-T	mg/L		<0.00050	<0.00050	<0.00050	
Se-T	mg/L		<0.00030	0.00010	<0.00030	
Si-T	mg/L		3.02	3.21	3.36	
Sn-T	mg/L		<0.0050	<0.0050	<0.0050	
Sr-T	mg/L		0.383	0.364	0.447	
Ti-T			<0.0050	<0.0050	<0.0050	
	mg/L					
TI-T	mg/L		0.000019	0.000015	<0.000010	
U-T	mg/L		<0.00010	<0.00010	<0.00010	
V-T	mg/L		<0.0050	<0.0050	<0.0050	
Zn-T	mg/L		<0.0050	<0.0050	<0.0050	
Zr-T	mg/L		<0.00010	<0.00010	<0.00010	

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	In-Situ 7-South	Area 5	
	Well ID	-	7SA5	7SA5	7SA5
	*Statio		MW	MW	MW
Date		,,,,,	23-Apr-24	24-May-24	18-Jun-24
Parameter	Units	CSR-AW			
SO4-D	mg/L	1280	69	120	140
H2SEquiv	mg/L	0.02	0.000957	0.00446	0.000957
Cond-F	uS/cm		439	544	549
pH-F	pH Units	<u> </u>	8.2	7.41	7.51
Temp-F	C	-	8	9.3	8.4
DO-F	mg/L			3.3	0.4
ORP-F	mV				
Turb	NTU		5.3	20	7.2
Alk-T			160	140	140
	mg/L				
Acidity83	mg/L		<1.0	<1.0	<1.0
N-D	mg/L		<0.10	0.369	0.192
DOC	mg/L		0.93	2.2	1.3
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		200	170	170
Carb	mg/L		<1.0	<1.0	<1.0
Cl-D	mg/L	1500	1.6	<1.0	<1.0
F-D	mg/L		0.44	0.28	0.32
Flu-CSR	mg/L		3.00	3.00	3.00
Br-D	mg/L		<0.010	0.024	0.020
P-D	mg/L		0.0099	<0.0030	0.0037
Al-D	mg/L		0.0045	0.0033	<0.0030
Ag-D	mg/L		<0.000020	<0.000020	<0.000020
Ag-CSR	mg/L		0.0150	0.0150	0.0150
As-D	mg/L	0.05	0.107	0.00217	0.0116
Ba-D	mg/L	10	0.145	0.160	0.111
B-D	mg/L	12	0.599	0.329	0.462
Be-D	mg/L	0.053	<0.00010	<0.00010	<0.00010
Bi-D	mg/L		<0.0010	<0.0010	<0.0010
Cd-D	mg/L		<0.000010	<0.000010	<0.00010
Cd-CSR	mg/L		0.000600	0.000600	0.000600
Ca-D	mg/L		55.1	78.8	65.0
Cr-D	mg/L	0.01	<0.0010	<0.0010	<0.0010
Co-D	mg/L	0.009	0.00092	0.00261	0.00222
Cu-D	mg/L	0.003	0.00032	0.00201	0.00222
Cu-CSR	mg/L		0.0800	0.0900	0.0900
Fe-D	mg/L		0.0314	0.0401	0.0900
				-	
Hard-D	mg/L		184	266	224
Pb-D	mg/L		<0.00020	<0.00020	<0.00020
Pb-CSR	U,		0.0600	0.110	0.110
Mg-D	mg/L		11.2	16.8	14.9
Mn-D	mg/L		0.0297	0.121	0.105
Hg-D	mg/L	0.001			
Na-D	mg/L		23.0	16.4	18.5
Mo-D	mg/L	10	<0.0010	<0.0010	<0.0010
Ni-D	mg/L		0.0019	0.0051	0.0051
Ni-CSR	mg/L		1.50	1.50	1.50
K-D	mg/L		2.07	1.63	1.83

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	In-Situ 7-South	Area 5	
	Well ID	-	7SA5	7SA5	7SA5
	*Statio		MW	MW	MW
Date			23-Apr-24	24-May-24	18-Jun-24
Parameter	Units	CSR-AW	20110121		
S-D	mg/L		24.0	55.7	45.0
Sb-D	mg/L	0.2	<0.00050	<0.00050	<0.00050
Se-D	mg/L	0.01	<0.00010	<0.00010	0.00015
Si-D	mg/L	0.01	5.78	4.67	4.08
Sr-D	mg/L		0.596	0.463	0.525
TI-D	mg/L	0.003	<0.000010	<0.00010	<0.00010
Ti-D	mg/L	1	<0.0050	<0.0050	<0.0050
U-D	mg/L	3	<0.00010	0.00015	<0.00010
V-D	mg/L	3	<0.0050	<0.0050	<0.0050
ט-ע Zn-D	_		<0.0050	0.0070	0.0054
	mg/L				
Zn-CSR	mg/L		0.900	1.650	1.650
N-NH3	mg/L		<0.015	<0.015	0.023
NH3-CSR	mg/L		3.7	18.5	11.3
Al-T	mg/L		0.0281	0.0459	0.0373
As-T	mg/L		0.111	0.0275	0.0274
В-Т	mg/L		0.510	0.257	0.442
Be-T	mg/L		<0.00010	<0.00010	<0.00010
Bi-T	mg/L		<0.0010	<0.0010	<0.0010
Са-Т	mg/L		46.6	63.6	60.1
Cd-T	mg/L		<0.000010	<0.000010	0.000035
Co-T	mg/L		0.00107	0.00219	0.00220
Cr-T	mg/L		<0.0010	<0.0010	<0.0010
Cu-T	mg/L		0.00094	0.00217	0.00092
Fe-T	mg/L		0.452	1.50	0.666
Hard-T	mg/L		157	214	208
K-T	mg/L		1.78	1.30	1.65
Li-T	mg/L		0.0318	0.0200	0.0269
Mg-T	mg/L		9.93	13.5	14.1
Mn-T	mg/L		0.0300	0.0984	0.101
Mo-T	mg/L		<0.0010	<0.0010	<0.0010
N-T	mg/L				
Na-T	mg/L		20.3	13.3	17.3
Ni-T	mg/L		0.0021	0.0043	0.0048
P-T	mg/L		1	3.00.0	2.22.10
Pb-T	mg/L		<0.00020	<0.00020	<0.00020
S-T	mg/L		21.8	43.7	42.5
Sb-T	mg/L		<0.00050	<0.00050	<0.00050
Se-T	mg/L		<0.00030	<0.00030	<0.00010
Si-T	mg/L		4.83	3.84	3.87
Sn-T	mg/L		<0.0050	<0.0050	<0.0050
	mg/L		0.487	0.372	
Sr-T	_				0.481
Ti-T	mg/L		<0.0050	<0.0050	<0.0050
TI-T	mg/L		<0.000010	<0.00010	<0.000010
U-T	mg/L		<0.00010	0.00010	<0.00010
V-T	mg/L		<0.0050	<0.0050	<0.0050
Zn-T	mg/L		<0.0050	0.0077	0.0073
Zr-T	mg/L		<0.00010	<0.00010	<0.00010

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	In-Situ 7-South	2-Mains	
	Well ID	•	2M7S	2M7S	2M7S
	*Statio		MW	MW	MW
Date		Турс	23-Apr-24	24-May-24	18-Jun-24
Parameter	Units	CSR-AW	23-Api-24	24-141dy-24	10-3411-24
SO4-D	mg/L	1280	230	240	250
H2SEquiv	mg/L	0.02	0.000957	0.000957	0.000957
Cond-F	uS/cm	0.02	588	650	665
pH-F	pH Units	•	7.65	7.44	7.47
Temp-F	C	•	7.3	6.9	7.47
DO-F	mg/L		7.3	0.9	7.3
ORP-F	mV				
			1.0	2.1	1.2
Turb	NTU		1.0	2.1	1.2
Alk-T	mg/L		72	67	68
Acidity83	mg/L		1.7	2.0	1.3
N-D	mg/L		0.169	0.181	0.192
DOC	mg/L		1.4	1.3	1.4
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		88	81	83
Carb	mg/L		<1.0	<1.0	<1.0
CI-D	mg/L	1500	<1.0	<1.0	<1.0
F-D	mg/L		0.11	0.11	0.11
Flu-CSR	mg/L		3.00	3.00	3.00
Br-D	mg/L		0.010	0.014	0.013
P-D	mg/L		<0.0030	<0.0030	<0.0030
Al-D	mg/L		<0.0030	<0.0030	<0.0030
Ag-D	mg/L		<0.000020	<0.000020	<0.000020
Ag-CSR	mg/L		0.0150	0.0150	0.0150
As-D	mg/L	0.05	0.00019	0.00016	0.00019
Ba-D	mg/L	10	0.0271	0.0278	0.0270
B-D	mg/L	12	0.180	0.200	0.216
Be-D	mg/L	0.053	<0.00010	<0.00010	<0.00010
Bi-D	mg/L		<0.0010	<0.0010	<0.0010
Cd-D	mg/L		0.000010	0.000011	0.000012
Cd-CSR	mg/L		0.000600	0.000600	0.000600
Ca-D	mg/L		93.5	95.5	88.9
Cr-D	mg/L	0.01	<0.0010	<0.0010	<0.0010
Co-D	mg/L	0.009	0.00388	0.00357	0.00327
Cu-D	mg/L	2.003	0.00031	0.00030	0.00026
Cu-CSR	mg/L		0.0900	0.0900	0.0900
Fe-D	mg/L		0.0521	0.0633	0.0809
Hard-D	mg/L		303	312	294
Pb-D	mg/L		<0.00020	<0.00020	<0.00020
Pb-CSR			0.160	0.160	0.110
	mg/L		+		17.4
Mg-D	mg/L		16.8	17.8	
Mn-D	mg/L	0.001	0.157	0.157	0.158
Hg-D	mg/L	0.001	7.11	7.70	7.00
Na-D	mg/L		7.14	7.76	7.32
Mo-D	mg/L	10	<0.0010	<0.0010	<0.0010
Ni-D	mg/L		0.0080	0.0079	0.0076
Ni-CSR	mg/L		1.50	1.50	1.50
K-D	mg/L		0.987	1.08	1.06

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	In-Situ 7-South	2-Mains	
	Well ID	-	2M7S	2M7S	2M7S
	*Statio	n Type	MW	MW	MW
Date			23-Apr-24	24-May-24	18-Jun-24
Parameter	Units	CSR-AW	•	,	
S-D	mg/L		79.8	88.2	82.0
Sb-D	mg/L	0.2	<0.00050	<0.00050	<0.00050
Se-D	mg/L	0.01	0.00011	0.00010	0.00014
Si-D	mg/L		3.17	3.40	3.08
Sr-D	mg/L		0.435	0.484	0.475
TI-D	mg/L	0.003	0.000049	0.000051	0.000063
Ti-D	mg/L	1	<0.0050	<0.0050	<0.0050
U-D	mg/L	3	<0.00010	<0.00010	<0.00010
V-D	mg/L		<0.0050	<0.0050	<0.0050
Zn-D	mg/L		0.0133	0.0149	0.0142
Zn-CSR	mg/L		2.400	2.400	1.650
N-NH3	mg/L		<0.015	<0.015	<0.015
NH3-CSR	mg/L		11.3	18.5	18.5
Al-T	mg/L		0.0031	0.0055	0.0054
As-T			+		+
AS-1 B-T	mg/L		0.00097	0.00069	0.00050
	mg/L		0.152	0.151	0.212
Be-T	mg/L		<0.00010	<0.00010	<0.00010
Bi-T	mg/L		<0.0010	<0.0010	<0.0010
Ca-T	mg/L		82.0	74.6	79.9
Cd-T	mg/L		0.000011	0.000013	0.000012
Co-T	mg/L		0.00364	0.00296	0.00311
Cr-T	mg/L		<0.0010	<0.0010	<0.0010
Cu-T	mg/L		<0.00050	<0.00050	<0.00050
Fe-T	mg/L		0.343	0.477	0.400
Hard-T	mg/L		266	246	266
K-T	mg/L		0.899	0.869	0.966
Li-T	mg/L		0.0095	0.0109	0.0114
Mg-T	mg/L		14.8	14.5	16.0
Mn-T	mg/L		0.142	0.139	0.146
Mo-T	mg/L		<0.0010	<0.0010	<0.0010
N-T	mg/L				
Na-T	mg/L		6.45	6.09	6.72
Ni-T	mg/L		0.0077	0.0065	0.0073
P-T	mg/L				
Pb-T	mg/L		<0.00020	<0.00020	<0.00020
S-T	mg/L		69.9	69.8	76.4
Sb-T	mg/L		<0.00050	<0.00050	<0.00050
Se-T	mg/L		0.00012	<0.00010	0.00011
Si-T	mg/L		2.74	2.72	2.86
Sn-T	mg/L		<0.0050	<0.0050	<0.0050
Sr-T	mg/L		0.378	0.359	0.428
Ti-T	mg/L		<0.0050	<0.0050	<0.0050
TI-T	mg/L		0.000045	0.000039	0.000057
U-T	mg/L		<0.00010	<0.00010	<0.00010
V-T	mg/L		<0.0050	<0.0050	<0.0050
Zn-T	mg/L		0.0135	0.0137	0.0146
Zr-T	mg/L		<0.0010	<0.00010	<0.00140

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	∷In-Situ 7-Sout	h 3-Mains	
	Well ID		3M7S	3M7S	3M7S
	*Station	n Type	MW	MW	MW
Date			23-Apr-24	24-May-24	18-Jun-24
Parameter	Units	CSR-AW		_	
SO4-D	mg/L	1280	840	800	860
H2SEquiv	mg/L	0.02	0.000957	0.000957	0.000957
Cond-F	uS/cm		1581	1570	1532
pH-F	pH Units	s	7.57	7.17	7.36
r Temp-F	С		7.8	7.2	7.5
DO-F	mg/L		7.0	7.2	7.0
ORP-F	mV				
Turb	NTU		0.64	0.90	0.75
Alk-T	mg/L		110	100	110
	_				
Acidity83	mg/L		3.9	3.1	2.9
N-D	mg/L		0.165	0.083	0.060
DOC	mg/L		<0.50	0.65	0.75
Hydrox	mg/L		<1.0	<1.0	<1.0
Bicarb	mg/L		130	120	130
Carb	mg/L		<1.0	<1.0	<1.0
Cl-D	mg/L	1500	1.7	1.4	1.4
F-D	mg/L		0.25	0.26	0.25
Flu-CSR	mg/L		3.00	3.00	3.00
Br-D	mg/L		<0.10	<0.10	<0.10
P-D	mg/L		<0.0030	<0.0030	<0.0030
Al-D	mg/L		<0.0060	<0.0060	<0.0060
Ag-D	mg/L		<0.00040	0.000149	<0.000040
Ag-CSR	mg/L		0.0150	0.0150	0.0150
As-D	mg/L	0.05	<0.00020	0.00048	<0.00020
Ba-D	mg/L	10	0.0220	0.0226	0.0206
B-D	mg/L	12	0.89	0.87	0.85
Be-D	mg/L	0.053	<0.00020	0.00039	<0.00020
Bi-D	mg/L	0.000	<0.0020	<0.0020	<0.0020
Cd-D	mg/L		0.000021	0.000815	<0.000020
Cd-CSR	mg/L		0.000600	0.000600	0.000600
Ca-D	mg/L		269	267	249
Cr-D	mg/L	0.01			
		0.01	<0.0020 0.00231	<0.0020	<0.0020
Co-D	mg/L	0.009		0.00430	0.00267
Cu-D	mg/L		<0.00040	0.00072	<0.00040
Cu-CSR	mg/L		0.0900	0.0900	0.0900
Fe-D	mg/L		0.017	0.010	0.011
Hard-D	mg/L		914	921	858
Pb-D	mg/L		<0.00040	0.00053	<0.00040
Pb-CSR	mg/L		0.160	0.160	0.160
Mg-D	mg/L		58.9	62.0	57.5
Mn-D	mg/L		0.0717	0.0956	0.0785
Hg-D	mg/L	0.001			
Na-D	mg/L		27.2	28.6	26.1
Mo-D	mg/L	10	<0.0020	0.0135	<0.0020
Ni-D	mg/L		0.0138	0.0167	0.0140
Ni-CSR	mg/L		1.50	1.50	1.50
K-D	mg/L		4.05	4.70	4.29

^{**} Calculated Parameters

Table 34 In-situ Minewater 18 Page(s)

	Descri	ption	In-Situ 7-Sout	th 3-Mains	
	Well ID		3M7S	3M7S	3M7S
	*Statio	n Type	MW	MW	MW
Date		•	23-Apr-24	24-May-24	18-Jun-24
Parameter	Units	CSR-AW	•	,	
S-D	mg/L		278	305	274
Sb-D	mg/L	0.2	<0.0010	0.0038	<0.0010
Se-D	mg/L	0.01	<0.00020	0.00056	<0.00020
Si-D	mg/L	0.02	2.76	2.83	2.80
Sr-D	mg/L		2.56	2.58	2.40
TI-D	mg/L	0.003	<0.000020	0.000863	<0.000020
Ti-D	mg/L	1	<0.010	0.012	<0.010
U-D	mg/L	3	<0.0020	0.00147	<0.0020
V-D	mg/L	<u> </u>	<0.010	<0.0147	<0.010
ע-ט Zn-D				0.016	<0.010
	mg/L		<0.010		
Zn-CSR	mg/L		2.400	2.400	2.400
N-NH3	mg/L		<0.015	<0.015	<0.015
NH3-CSR	mg/L		11.3	18.5	18.5
Al-T	mg/L		0.0034	0.0101	0.0042
As-T	mg/L		0.00029	0.00026	0.00022
В-Т	mg/L		0.721	0.684	0.773
Be-T	mg/L		<0.00010	<0.00010	<0.00010
Bi-T	mg/L		<0.0010	<0.0010	<0.0010
Са-Т	mg/L		244	212	208
Cd-T	mg/L		0.000021	0.000019	0.000017
Co-T	mg/L		0.00218	0.00261	0.00212
Cr-T	mg/L		<0.0010	<0.0010	<0.0010
Cu-T	mg/L		<0.00050	0.00067	<0.00050
Fe-T	mg/L		0.106	0.191	0.136
Hard-T	mg/L		821	740	731
К-Т	mg/L		3.60	3.55	3.69
Li-T	mg/L		0.0636	0.0677	0.0667
Mg-T	mg/L		51.2	51.2	51.6
Mn-T	mg/L		0.0586	0.0925	0.0877
Mo-T	mg/L		<0.0010	<0.0010	<0.0010
N-T	mg/L				
Na-T	mg/L		23.5	22.5	22.5
Ni-T	mg/L		0.0126	0.0103	0.0111
P-T	mg/L		1 3.3223	1.0200	3.0222
Pb-T	mg/L		<0.00020	<0.00020	<0.00020
S-T	mg/L		246	239	243
Sb-T	mg/L		<0.00050	<0.00050	<0.00050
Se-T	mg/L		<0.00030	<0.00030	<0.00030
Si-T	mg/L		2.35	2.57	2.47
Sn-T	mg/L		<0.0050	<0.0050	<0.0050
			2.21		2.16
Sr-T	mg/L		_	2.01	
Ti-T	mg/L		<0.0050	<0.0050	<0.0050
TI-T	mg/L		0.000011	0.000011	0.000011
U-T	mg/L		0.00017	0.00013	0.00013
V-T	mg/L		<0.0050	<0.0050	<0.0050
Zn-T	mg/L		0.0078	0.0094	0.0090
Zr-T	mg/L		<0.00010	<0.00010	<0.00010

^{**} Calculated Parameters

Table 35 Seepage Near QU1109 (S) 1 Page(s)

EMS ID			Stn Std	Max-WQG		
Site Description	Seepage n	ear QU110	9			
Site Name	S	Std Val				
Date	1	Acute	Chronic	03-04-2024	07-05-2024	04-06-2024
Flow	m3/s				0.00007	0.00007
pH-F	pH Units		6.5 - 9.0	7.85	7.78	8.13
Cond-F	uS/cm			755	1277.6	1186
SO4-D	mg/L		≤ 309	150	150	150
Turb	NTU			0.60	0.55	0.54
Alk-T	mg/L			350	440	430
Acidity83	mg/L	4.000	. 150	<1.0	<1.0	<1.0
Cl-D DOC	mg/L	≤ 600	≤ 150	2.0	45 1.7	45 2.4
F-D	mg/L mg/L	≤ 1.29		0.47	0.54	0.54
Al-T	mg/L	≥ 1.29		0.0074	0.0083	0.0083
Al-T (Chronic-WQG)	mg/L			0.1900	0.1600	0.2600
As-T	mg/L		≤ 0.005	0.0620	0.1000	0.0688
Ba-T	mg/L		3 0.003	0.0451	0.0516	0.0441
B-T	mg/L		≤ 1.2	1.11	1.53	1.36
Cd-T	mg/L	1	_ 1.2	<0.000010	<0.000010	<0.000010
Ca-T	mg/L			22.5	26.6	22.7
Cr-T	mg/L			< 0.0010	<0.0010	<0.0010
Co-T	mg/L	≤ 0.11	≤ 0.004	<0.00020	<0.00020	<0.00020
Cu-T	mg/L			< 0.00050	< 0.00050	< 0.00050
Hard-T	mg/L			82.2	95.0	80.1
Fe-T	mg/L	≤1		0.112	0.170	0.180
Pb-T	mg/L	≤ 0.01763	≤ 0.0039978	< 0.00020	< 0.00020	< 0.00020
Mg-T	mg/L			6.32	6.96	5.70
Mn-T	mg/L	≤0.8706	≤0.737	0.0176	0.0275	0.0237
Мо-Т	mg/L	≤ 2		< 0.0010	< 0.0010	< 0.0010
Ni-T	mg/L			< 0.0010	< 0.0010	< 0.0010
K-T	mg/L			2.83	3.52	3.14
S-T	mg/L			46.8	54.6	47.2
Se-T	mg/L			< 0.00010	< 0.00010	< 0.00010
Si-T	mg/L			4.25	4.43	4.04
Ag-T	mg/L	≤ 0.0001		< 0.000020	< 0.000020	< 0.000020
Na-T	mg/L			182	254	217
Sr-T	mg/L			0.322	0.387	0.363
Zn-T	mg/L	≤ 0.033	≤ 0.0075	< 0.0050	< 0.0050	< 0.0050
Al-D	mg/L		≤ 0.442	0.0052	0.0036	0.0076
As-D	mg/L			0.0676	0.0762	0.0767
Ba-D	mg/L			0.0501	0.0536	0.0503
B-D	mg/L			1.25	1.58	1.63
Be-D	mg/L	< 0.00047	< 0.000007	<0.00010	<0.00010	<0.00020
Cd-D	mg/L	≤ 0.00017	≤ 0.000087	<0.000010	<0.000010	<0.000020
Ca-D	mg/L	-		25.0	25.3	25.4
Cr-D	mg/L			<0.0010 <0.00020	<0.0010	<0.0020
Co-D Cu-D	mg/L mg/L	≤0.0002	≤0.0002	<0.00020	<0.00020 0.00062	<0.00040 < 0.00040
Hard-D	mg/L	≥0.0002	≥0.0002	91.5	92.6	91.6
Fe-D	mg/L	≤ 0.35		0.0952	0.101	0.125
Pb-D	mg/L	2 0.33		<0.00020	<0.00020	<0.00040
Mg-D	mg/L			7.06	7.12	6.81
Mn-D	mg/L			0.0179	0.0162	0.0162
Mo-D	mg/L			<0.0010	<0.0010	<0.0020
Ni-D	mg/L			< 0.0010	< 0.0010	<0.0020
K-D	mg/L			3.10	3.52	3.62
S-D	mg/L			52.1	53.8	52.9
Se-D	mg/L		≤0.002	< 0.00010	< 0.00010	< 0.00020
Si-D	mg/L			4.73	4.57	4.51
Na-D	mg/L			200	243	251
	1111 g L					
Sr-D	mg/L			0.368	0.434	0.423

Table 36 Seepage Near QU1105 (S2A) 1 Page(s)

EMS ID			Stn Std	Max-WQG		
Site Description	Potential S	Seepage (S2A)	near QU1105 e	ntering river		
Site Name	S2A	Std Val	WQG	Ü		
Date		Acute	Chronic	03-04-2024	07-05-2024	04-06-2024
Flow	m3/s			0.00215	0.0008	0.00042
pH-F	pH Units		6.5 - 9.0	7.5	7.12	7.4
Cond-F	uS/cm			641	795.1	747
SO4-D	mg/L		≤ 309	86	130	140
Turb	NTU			0.54	0.46	0.52
Alk-T	mg/L			230	250	230
Acidity83	mg/L			<1.0	4.1	1.1
Cl-D	mg/L	≤ 600	≤ 150	6.4	12	12
DOC	mg/L			2.0	1.7	1.7
F-D	mg/L	≤ 1.29		0.25	0.29	0.30
Al-T	mg/L			0.0115	0.0034	0.0034
Al-T (WQG-Chronic)	mg/L			0.1500	0.1100	0.1300
As-T	mg/L		≤ 0.005	0.0194	0.0217	0.0290
Ba-T	mg/L			0.0558	0.0539	0.0513
B-T	mg/L		≤ 1.2	0.452	0.544	0.544
Cd-T	mg/L			< 0.000010	< 0.000010	< 0.000010
Ca-T	mg/L			39.2	41.0	38.1
Cr-T	mg/L			< 0.0010	< 0.0010	< 0.0010
Co-T	mg/L	≤ 0.11	≤ 0.004	< 0.00020	< 0.00020	< 0.00020
Cu-T	mg/L			< 0.00050	< 0.00050	< 0.00050
Hard-T	mg/L			133	139	128
Fe-T	mg/L	≤ 1		0.158	0.187	0.267
Pb-T	mg/L	≤ 0.01763	≤ 0.0039978	< 0.00020	< 0.00020	< 0.00020
Mg-T	mg/L			8.57	8.90	8.01
Mn-T	mg/L	≤0.8706	≤0.737	0.0464	0.120	0.135
Mo-T	mg/L	≤ 2		< 0.0010	< 0.0010	< 0.0010
Ni-T	mg/L			< 0.0010	< 0.0010	< 0.0010
K-T	mg/L			2.66	2.78	2.78
S-T	mg/L			30.0	43.8	43.9
Se-T	mg/L			< 0.00010	< 0.00010	< 0.00010
Si-T	mg/L			3.28	2.87	2.97
Ag-T	mg/L	≤ 0.0001		<0.000020	<0.000020	<0.000020
Na-T	mg/L			76.6	101	97.3
Sr-T	mg/L			0.570	0.565	0.570
Zn-T	mg/L	≤ 0.033	≤ 0.0075	< 0.0050	<0.0050	<0.0050
Al-D	mg/L	≤ 0.1	≤ 0.0075	0.0050	<0.0030	<0.0030
As-D	mg/L			0.0185	0.0224	0.0312
Ba-D	mg/L			0.0575	0.0598	0.0587
B-D	mg/L			0.478	0.614	0.612
Be-D	mg/L			<0.00010	<0.00010	<0.00010
Cd-D	mg/L	≤ 0.00017	≤ 0.000087	<0.000010	<0.000010	<0.000010
Ca-D	mg/L			39.5	43.7	41.8
Cr-D	mg/L			<0.0010	<0.0010	<0.0010
Co-D	mg/L	<0.0003	<0.0003	<0.00020	<0.00020	<0.00020
Cu-D	mg/L	≤0.0002	≤0.0002	0.00021	<0.00020	<0.00020
Hard-D	mg/L	Z 0 35		136	149	142
Fe-D	mg/L	≤ 0.35		0.119	0.194	0.264
Pb-D Mg D	mg/L			<0.00020	<0.00020	<0.00020
Mg-D	mg/L			9.16	9.67	9.15
Mn-D	mg/L			0.0474 <0.0010	0.126	0.149
Mo-D Ni-D	mg/L			<0.0010	<0.0010 <0.0010	<0.0010 <0.0010
K-D	mg/L			2.73	3.05	
	mg/L			30.7		2.98
S-D	mg/L		<0.003		47.0	49.3
Se-D	mg/L		≤0.002	<0.00010	<0.00010	<0.00010
Si-D	mg/L			3.35	3.31	3.12
Na-D	mg/L			78.6	107	111
Sr-D	mg/L	Z 0 022	< 0.0075	0.589	0.674	0.663
Zn-D	mg/L	≤ 0.033	≤ 0.0075	< 0.0050	< 0.0050	< 0.0050

Table 37 Seepage Near QU1105 (S2B) 1 Page(s)

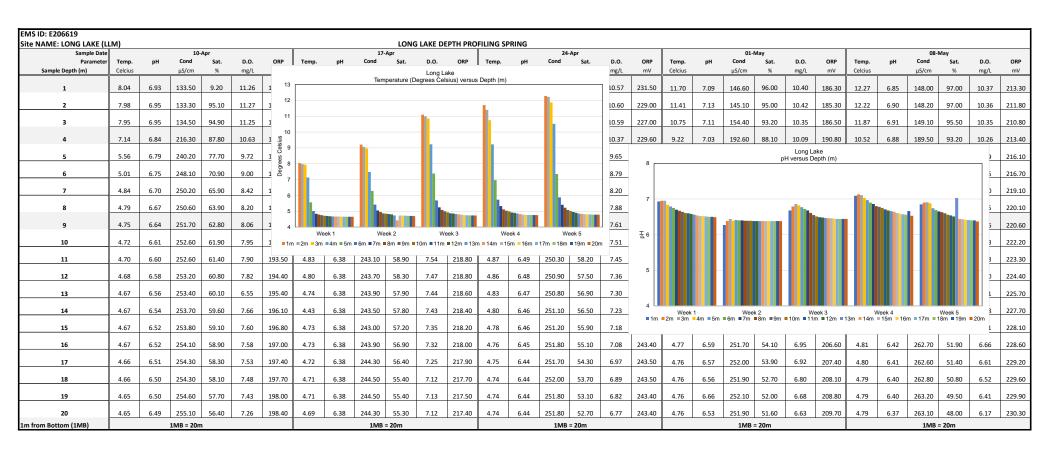

EMS ID			Stn Std	Max-WQG
Site Description	Potential :	Seepage (S2B)	near QU1105 en	tering river
Site Name	S2B	Std Val	WQG	
Date		Acute	Chronic	03-04-2024
Flow	m3/s			0.00051
pH-F	pH Units		6.5 - 9.0	7.06
Cond-F	uS/cm			709
SO4-D	mg/L		≤ 309	95
Turb	NTU			0.96
Alk-T	mg/L			250
Acidity83	mg/L			<1.0
Cl-D	mg/L	≤ 600	≤ 150	6.2
DOC	mg/L	3 000	3 130	1.7
F-D	mg/L	≤ 1.29		0.33
Al-T	mg/L	_ 1.23	0.11	0.0067
As-T	mg/L		≤ 0.005	0.0292
Ba-T	mg/L		2 0.003	0.0576
B-T	mg/L		≤ 1.2	0.521
Cd-T	mg/L			<0.00010
Ca-T	mg/L			41.4
Cr-T	mg/L			<0.0010
Co-T	mg/L	≤ 0.11	≤ 0.004	<0.0010
Cu-T	mg/L	20.11	2 0.004	<0.00050
Hard-T	mg/L			142
Fe-T	mg/L	≤1		0.276
Pb-T	mg/L	≤ 0.01763	≤ 0.0039978	<0.00020
Mg-T	mg/L	20.01703	20.0039978	9.32
Mn-T	mg/L	≤0.8706	≤0.737	0.0764
Mo-T	mg/L	≤2	30.737	< 0.0010
Ni-T	mg/L	3.2		<0.0010
K-T	mg/L			3.02
S-T	mg/L mg/L			33.1
Se-T	mg/L			<0.00010
Si-T	mg/L			3.33
Ag-T	mg/L	≤ 0.0001		<0.000020
Na-T	mg/L	⊒ 0.0001		84.0
Sr-T	mg/L			0.640
Zn-T	mg/L	≤ 0.033	≤ 0.0075	<0.0050
Al-D	mg/L	≤ 0.033	≤ 0.0075	0.0038
As-D	mg/L	3 0.1	3 0.0073	0.0269
Ba-D	mg/L			0.0613
B-D	mg/L			0.547
Be-D	mg/L			<0.00010
Cd-D	mg/L	≤ 0.00017	≤ 0.000087	<0.00010
Ca-D	mg/L	3 0.00017	2 0.000007	43.6
Cr-D	mg/L mg/L			<0.0010
Cr-D Co-D	mg/L mg/L		+	<0.0010
Cu-D	mg/L mg/L	≤0.0002	≤0.0002	<0.00020
Hard-D	mg/L mg/L	≥0.0002	≥0.0002	<0.00020 151
		<0.0F		
Fe-D Pb-D	mg/L	≤ 0.35		0.203
Mg-D	mg/L			<0.00020 10.2
Mn-D	mg/L mg/L		+	0.0765
Mo-D	mg/L mg/L		+	<0.0010
Ni-D				<0.0010
	mg/L			
K-D	mg/L			3.20
S-D	mg/L		40.000	35.0
Se-D	mg/L		≤0.002	<0.00010
Si-D	mg/L			3.46
Na-D	mg/L			89.5
Sr-D	mg/L			0.701
Zn-D	mg/L	≤ 0.033	≤ 0.0075	< 0.0050

Table 38 No Name Lake Depth Profile 1 Page(s)

MS ID: E217018 ite NAME: NO NAME I	I AKE (NNI	1									NO NAM	E I AKE DE	PTH PROF	II ING SPR	ING															
Sample Date	I THE COURT		10	-Apr					17	-Apr	IIO IIAIII	L LAKE DE		ILIIVO SI IV		-Apr					01-	Mav					08	-May		
Parameter	TEMP.	рН	COND.	% Sat.	D.O.	ORP	TEMP.	рН	COND.	% Sat.	D.O.	ORP	TEMP.	рН	COND.	% Sat.	D.O.	ORP	TEMP.	рН	COND.	% Sat.	D.O.	ORP	TEMP.	рН	COND.	% Sat.	D.O.	*ORP
Sample Depth (m)	°C		μS/cm		mg/L	mV	°C		μS/cm		mg/L	mV	°C		μS/cm		mg/L	mV	°C		μS/cm		mg/L	mV	°C		μS/cm		mg/L	mV
1	7.9	6.54	27.8	95.0	11.27	170.9	9.4	6.81	27.7	97.4	11.13	192.6	11.1	6.63	29.2	97.4	10.71	203.2	11.4	6.90	29.6	95.1	10.40	182.4	12.0	7.24	31.7	95.6	10.31	103.6
2	7.9	6.52	27.8	95.0	11.27	171.2	9.4	6.73	27.6	96.9	11.09	194.4	11.1	6.55	29.2	96.9	10.67	206.9	11.3	6.77	29.6	94.8	10.39	186.0	12.0	7.12	31.6	95.5	10.30	106.2
3	7.8	6.44	27.8	94.6	11.25	175.3	8.7	6.69	27.7	95.4	11.13	194.4	10.7	6.53	29.3	96.0	10.66	207.9	10.8	6.70	29.6	93.7	10.37	188.0	11.3	7.04	32.1	93.6	10.26	106.6
4	6.6	6.39	28.0	90.4	11.09	176.8	7.6	6.63	27.6	92.4	11.07	195.8	9.7	6.49	29.4	93.5	10.65	209.8	10.1	6.66	29.9	92.0	10.35	190.8	10.7	6.95	31.8	91.4	10.16	108.1
5	6.1	6.31	28.3	88.9	11.04	179.2	6.3	6.56	27.6	88.9	10.96	197.0	6.8	6.44	29.3	86.9	10.60	210.2	8.1	6.55	29.2	87.5	10.33	194.4	9.0	6.85	31.6	87.5	10.14	111.1
6	5.5	6.29	28.8	86.6	10.91	181.5	5.6	6.47	28.2	85.4	10.96	198.9	5.9	6.31	29.7	83.3	10.41	213.2	6.6	6.48	29.6	84.7	10.37	196.3	7.1	6.73	31.1	84.3	10.21	114.0
7	5.2	6.24	29.2	85.3	10.85	182.9	5.4	6.40	28.4	84.2	10.64	201.4	5.7	6.27	29.6	82.5	10.33	215.4	5.9	6.39	29.6	82.5	10.28	199.1	6.5	6.58	31.2	81.9	10.09	116.8
8	5.1	6.21	29.2	84.9	10.82	183.8	5.3	6.28	28.8	83.0	10.53	204.2	5.7	6.23	29.6	82.0	10.33	217.5	5.6	6.33	29.8	80.3	10.09	202.3	6.1	6.45	31.1	80.8	10.04	119.4
9	5.0	6.21	29.3	84.7	10.80	184.1	5.2	6.23	29.0	82.2	10.45	206.9	5.5	6.20	29.9	81.2	81.10	219.3	5.5	6.27	29.9	79.5	10.03	204.9	5.9	6.36	31.2	79.6	9.94	121.1
10	5.0	6.19	29.3	84.5	10.79	185.0	5.2	6.19	29.1	81.8	10.40	208.4	5.4	6.16	29.9	80.6	10.18	221.9	5.5	6.25	29.9	79.1	9.98	204.3	5.8	6.29	31.2	79.0	9.87	123.3
11	5.0	6.18	29.6	84.2	10.76	185.6	5.2	6.15	29.1	81.5	10.37	210.6	5.4	6.15	29.8	80.4	10.15	222.7	5.4	6.21	30.0	78.6	9.93	206.9	5.8	6.22	31.2	78.8	9.85	124.2
12	5.0	6.18	29.6	84.0	10.73	185.6	5.2	6.12	29.1	81.4	10.35	211.4	5.4	6.14	30.0	79.8	10.09	225.6	5.3	6.17	30.1	78.2	9.90	208.2	5.7	6.16	31.3	78.4	9.83	126.0
																														* Collected
13																			12		Ter	nperature (E	No Name Degrees Cels		Depth (m)					May 16
n from Bottom (1MB)			1MB :	= 12.0m					1MB:	= 12.0m					1MB :	= 12.0m			12											

Appendix 1 - Tables

Table 39 Long Lake Depth Profile 1 Page(s)

Table 40 Middle Quinsam Lake Depth Profile 1 Page(s)

EMS ID E206618																														
Site NAME: MIDDLE QUINS	SAM LAKE (N	/QL)					nr .				MIDDLE	QUINSA	M LAKE D	EPTH PRO	OFILING S	PRING			nr .						ı					
Sample Date			10-	Apr					17-	Apr					24-	Apr					01-	May					1-80	May		
Parameter	TEMP.	pН	COND.	% Sat.	D.O.	ORP	TEMP.	pН	COND.	% Sat.	D.O.	ORP	TEMP.	pН	COND.	% Sat.	D.O.	ORP	TEMP.	pН	COND.	% Sat.	D.O.	ORP	TEMP.	рН	COND.	% Sat.	D.O.	ORP
Sample Depth (m)	°C		μS/cm	,	mg/L	mV	°C		μS/cm		mg/L	mV	°C		μS/cm		mg/L	mV	°C		μS/cm		mg/L	mV	°C		μS/cm		mg/L	mV
1	8.3	7.18	128.6	98.1	11.54	161	9.5	7.18	110.7	98.6	11.25	189.4	11.6	7.22	108.8	99.7	10.85	218.7	12.1	7.45	116.6	97.8	10.50	187.0	12.5	7.22	124.2	98.2	10.46	201.4
2	8.3	7.28	128.6	98.0	11.54	160.6	9.5	7.23	110.4	98.5	11.26	187.8	11.5	7.24	108.7	99.6	10.85	218.9	11.6	7.46	116.3	96.8	10.52	185.1	12.4	7.29	124.2	98.1	10.48	200.2
														_		-														
3	8.2	7.29	128.5	97.7	11.53	160.1	9.4	7.27	110.3	98.4	11.26	187.3	11.4	7.26	108.7	99.3	10.84	218.2	11.4	7.47	116.5	96.2	10.51	185.0	12.3	7.30	125.5	98.1	10.50	198.2
4	8.1	7.32	128.7	97.6	11.53	160.1	9.4 7.27 110.5 98.3 11.26 186.7							7.27	109.0	98.6	10.80	217.6	11.3	7.47	116.2	95.8	10.51	185.6	12.1	7.33	125.5	97.5	10.50	197.3
5	7.9	7.32	128.4	97.0	11.51	160.1	9.1	7.29	109.3	97.6	11.24	186.2	10.4	7.30	109.8	97.7	10.94	217.2	11.1	7.47	116.5	95.3	10.49	187.0	11.7	7.33	123.3	96.7	10.50	197.2
6	7.7	7.33	128.1	96.5	11.49	160	8.8	7.29	116.4	97.6	11.33	186.0	9.9	7.31	112.6	97.4	11.05	217.0	10.8	7.46	116.8	95.3	10.54	185.6	11.1	7.33	121.8	96.4	10.62	196.9
-																							-5.5							
7	7.5	7.32	128.2	95.8	11.50	160.3	8.1	7.3	122.7	96.2	11.41	186.3	9.1	7.31	117.7	96.5	11.20	217.5	9.6	7.45	117.3	95.7	10.93	185.9	10.8	7.30	121.6	96.4	10.69	197.7
8	7.1	7.31	127.5	95.1	11.52	160.6	7.3	7.29	122.6	94.9	11.43	186.7	8.0	7.30	122.8	95.6	11.32	217.9	8.3	7.42	122.5	94.8	11.15	187.0	9.3	7.29	126.1	95.3	11.02	198.4
	7.1	7.31	127.3	33.1	11.52	100.0	7.3	7.23	122.0	54.5	11.43	100.7	0.0	7.30	122.0	93.0	11.52	217.5	0.5	7.42	122.5	54.0	11.15	107.0	9.5	7.25	120.1	33.3	11.02	150.4
9	6.6	7.30	126.0	94.2	11.56	160.8	6.7	7.27	121.9	93.6	11.43	187.1	7.1	7.23	125.4	93.0	11.26	218.9	7.6	7.40	125.1	93.7	11.21	188.2	8.1	7.27	130.3	93.0	11.12	199.4
10	6.0	7.28	125.0	92.4	11.53	161.7	6.5	7.24	121.3	92.8	11.39	187.6	6.9	7.23	125.8	92.3	11.23	219.9	7.0	7.36	126.3	91.3	11.07	189.4	7.5	7.25	131.6	92.0	11.04	199.7
10	6.0	7.20	123.0	32.4	11.33	101.7	0.5	7.24	121.5	52.0	11.55	107.0	6.9	7.23	125.8	92.3	11.23	219.9	7.0	7.30	120.3	91.3	11.07	189.4	7.5	7.25	131.0	92.0	11.04	199.7
11	5.7	7.24	125.0	91.4	11.49	162.8	6.2	7.21	121.5	91.3	11.31	188.2	6.7	7.22	126.1	91.3	11.16	220.5	6.7	7.32	127.5	190.5	10.82	190.6	7.3	7.22	132.0	90.7	10.92	200.6
	5.6	7.21	125.0	01.0	11.45	163.6		7.10	121.6	90.3	44.22	100.0		7.00	405.0	00.5		224.0		7.00	407.7	404 6	40.70		7.4	7.40	400.0	00.5	40.74	204.5
12	5.6	7.21	125.0	91.0	11.45	1b3.b	6.1	7.18	121.6	90.3	11.22	189.6	6.6	7.20	126.9	90.5	11.11	221.0	6.6	7.29	127.7	191.4	10.73	191.4	7.1	7.18	132.8	88.5	10.71	201.6
13	5.5	7.19	127.0	90.1	11.36	164.4	5.9	7.14	122.2	88.8	11.07	191.0	6.5	7.19	126.7	90.0	11.05	221.5	6.6	7.26	127.9	192.3	10.62	192.3	6.9	7.15	133.3	86.8	10.53	202.5
14							5.9	7.09	122.1	88.4	11.04	192.5	6.5	7.16	127.5	88.8	10.91	222.6												
1m from Bottom (BS)		BS=13.0m BS=14.0m												BS=1	4.0m					BS=1	13.0m					BS=1	3.0m			

Table 41 LQL Depth Profile 1 Page(s)

ite NAME: LOWER QUINSAM	LOWER QUINSAM LAKE DEPTH PROFILING SPRING 1 QUINSAM LAKE (LQL)															,														
	1 LAKE (LQL)						1																							
Sample Date)-Apr					17-						25-						01-1						1-80	. ,		
Parameter Sample Depth (m)	TEMP.	рН	uS/cm	% Sat.	D.O. mg/L	ORP mV	TEMP.	pН	uS/cm	% Sat.	D.O. mg/L	ORP mV	TEMP. °C	рн	uS/cm	% Sat.	D.O. mg/L	ORP mV	TEMP. °C	pН	uS/cm	% Sat.	D.O. mg/L	ORP mV	TEMP.	рН	uS/cm	% Sat.	D.O. mg/L	ORP mV
Sample Depth (m)			дз/сп		IIIg/L	IIIV			μ3/сп		IIIg/L	IIIV			μз/сп		IIIg/L	IIIV		Ι	дз/сп		IIIg/L	IIIV	_		μ3/сп		IIIg/L	IIIV
1	8.1	7.31	94.1	99.9	11.81	160.1	9.5	7.30	91.3	101.1	11.54	168.6	11.0	.7.36	98.0	100.5	11.08	202.8	11.3	7.40	96.3	99.7	10.95	190.7	13.3	7.33	101.6	102.1	10.73	170.0
2	8.0	7.31	93.0	99.7	11.82	160.2	8.8	7.29	91.3	99.8	11.57	167.2	10.7	7.37	99.2	99.8	11.05	202.6	10.9	7.38	96.3	98.3	10.87	190.9	12.2	7.31	101.7	100.4	10.77	171.6
3	7.7	7.31	96.2	98.8	11.79	159.8	8.3	7.30	92.6	97.6	11.48	167.0	10.3	7.33	100.4	97.5	10.94	204.3	10.3	7.37	96.2	97.3	10.89	191.3	11.4	7.30	102.1	98.6	10.75	172.2
4	7.5	7.30	93.7	98.0	11.75	160.7	8.1	7.27	93.7	96.6	11.41	167.6	9.7	7.31	99.7	97.5	11.10	204.2	10.1	7.34	96.8	96.2	10.85	192.9	11.1	7.28	101.8	97.5	10.74	173.3
5	7.3	7.29	91.7	97.2	11.70	160.3	8.0	7.27	93.8	96.0	11.36	167.7	9.5	7.31	99.2	97.2	11.09	204.8	9.8	7.33	96.1	95.3	10.81	193.7	10.7	7.26	101.9	96.4	10.72	175.7
6	7.3	7.29	91.8	96.8	11.67	160.4	8.0	7.26	93.7	95.5	11.31	169.0	8.9	7.31	96.4	95.8	11.12	204.3	9.7	7.33	96.8	94.6	10.75	193.5	10.5	7.25	101.8	95.3	10.64	174.3
7	7.3	7.29	91.7	96.5	11.63	160.5	8.0	7.27	93.7	95.1	11.27	168.0	8.6	7.29	96.2	95.1	11.08	204.9	9.5	7.29	96.2	94.0	10.73	193.0	10.1	7.23	101.2	94.3	10.62	175.3
,	7.3	7.25	31.7	30.3	11.05	100.5	6.0	1.21	33.7	93.1	11.27	100.0	0.0	7.25	30.2	55.1	11.00	204.5	5.5	7.25	50.2	34.0	10.73	193.0	10.1	7.23	101.2	34.3	10.02	1/3.3
8	7.2	7.28	91.1	96.2	11.61	160.8	7.8	7.25	93.9	94.5	11.23	168.1	8.4	7.24	95.9	94.0	11.02	206.6	9.2	7.29	96.0	93.2	10.72	194.2	9.4	7.20	100.5	92.6	10.60	176.5
9	7.2	7.27	90.8	95.9	11.59	160.9	7.7	7.24	93.9	93.8	11.19	168.6	8.2	7.24	95.8	93.0	10.96	206.5	9.1	7.26	95.6	92.7	10.70	195.0	9.1	7.14	100.4	91.1	10.52	177.2
10	7.1	7.27	90.8	95.6	11.57	161.2	7.6	7.23	93.6	93.1	11.14	168.8	8.1	7.20	95.8	92.3	10.90	208.0	8.7	7.24	95.8	91.6	10.67	195.4	8.7	7.13	100.0	89.4	10.41	178.3
11	7.1	7.24	90.7	95.3	11.54	162.3	7.6	7.21	93.6	92.9	11.11	169.3	8.0	7.17	96.1	91.7	10.85	209.6	8.4	7.22	96.1	90.5	10.62	196.1	8.6	7.10	100.0	88.5	10.33	179.7
12	7.0	7.25	90.5	94.9	11.51	162.7	7.6	7.19	93.5	92.7	11.09	169.8	8.0	7.15	96.3	91.5	10.83	209.9	8.2	7.20	96.0	89.5	10.57	196.5	8.5	7.08	100.1	87.7	10.27	180.6
13	6.9	7.23	91.1	94.5	11.48	162.9	7.5	7.20	93.5	92.1	11.06	169.9	8.0	7.14	96.4	91.1	10.79	210.5	8.1	7.17	95.9	88.5	10.46	197.7	8.3	7.05	100.2	86.2	10.19	181.7
14	6.8	7.21	90.3	93.8	11.42	163.1	7.3	7.19	93.0	91.0	10.94	170.3	7.9	7.13	96.4	90.6	10.75	211.1	8.0	7.15	96.1	87.5	10.38	198.4	8.1	7.01	100.3	83.6	9.88	182.2
15	6.8	7.20	89.9	93.2	11.38	163.6	7.2	7.15	92.3	89.8	10.84	171.2	7.7	7.10	96.4	89.4	10.65	212.3	7.9	7.13	96.2	85.8	10.22	199.0	8.0	6.98	100.4	82.3	9.75	183.2
16	6.7	7.19	90.6	91.9	11.23	163.2	7.1	7.11	92.0	88.7	10.72	172.8	7.6	7.07	96.6	87.8	10.47	213.8	7.8	7.11	96.4	84.6	10.08	199.3	7.9	6.94	100.4	80.1	9.53	184.1
17	6.5	7.18	91.1	90.5	11.10	164.2	7.1	7.08	91.9	88.0	10.65	173.6	7.6	7.04	96.7	86.8	10.38	214.6	7.8	7.10	96.4	83.6	9.97	199.1	7.8	6.90	100.9	77.4	9.27	182.3
Lm from Bottom (BS)				17.0m					BS=1			1			BS=1						BS=1						BS=1			

Table 42 Spring Lakes 17 Page(s)

EMS ID		E217018											
StnName		No Name Lake 1M											Count of result
StnCode		NNL1								Water Qualit	ty Guidelines		exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
SO4-D	mg/L	<1.0	<1.0	1.2	1.2	1.2	5	1.2	0.92	128		1.2	0
Γurb	NTU	0.32	0.29	0.35	0.44	0.21	5	0.44	0.32			0.4	0
Alk-T	mg/L	11	11	11	11	11	5	11	11.0			11	0
Al-T	mg/L	0.0417	0.0383	0.0354	0.0361	0.0297	5	0.0417	0.0362	*		0.0403	0
As-T	mg/L	0.00020	0.00022	0.00017	0.00023	0.00021	5	0.00023	0.00021	0.005		0.00023	0
В-Т	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
Ва-Т	mg/L	<0.0010	0.0010	<0.0010	0.0010	<0.0010	5	0.0010	0.00070	1		0.001	0
Cd-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
Ca-T	mg/L	3.09	3.14	3.19	3.36	3.09	5	3.36	3.17			3.29	0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
Cu-T	mg/L	0.00052	0.00054	<0.00050	<0.00050	<0.00050	5	0.00054	0.000362			0.000532	0
Fe-T	mg/L	0.045	0.040	0.041	0.049	0.045	5	0.049	0.044		1	0.047	0
Hard-T	mg/L	10.5	10.8	10.8	11.4	10.4	5	11.4	10.8			11.2	0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
Mg-T	mg/L	0.682	0.725	0.689	0.737	0.659	5	0.737	0.698			0.732	0
Mn-T	mg/L	0.0031	0.0036	0.0038	0.0041	0.0036	5	0.0041	0.0036	0.737	0.8706	0.004	0
P-T	mg/L	0.0037	0.0064	0.0043	0.0053	<0.0030	5	0.0064	0.00424	0.015		0.00596	0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
K-T	mg/L	0.053	0.056	<0.050	0.053	<0.050	5	0.056	0.0424			0.0548	0
S-T	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0
Se-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.00005	0
Ag-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.00001	0
Na-T	mg/L	0.900	0.982	0.957	0.998	0.897	5	0.998	0.947			0.992	0
Sr-T	mg/L	0.0091	0.0094	0.0099	0.0099	0.009	5	0.0099	0.0095			0.0099	0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
Al-D	mg/L	0.0406	0.0374	0.0351	0.0363	0.03	5	0.0406	0.0359			0.0393	0
As-D	mg/L	0.00021	0.00022	0.00021	0.00023	0.00024	5	0.00024	0.00022			0.00024	0
Ba-D	mg/L	0.0010	0.0010	0.0011	0.0010	0.0011	5	0.0011	0.0010			0.0011	0
B-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
Cd-D	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
Ca-D	mg/L	3.52	3.46	3.65	3.46	3.65	5	3.65	3.55			3.65	0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
Cu-D	mg/L	0.00049	0.00050	0.00044	0.00042	0.00046	5	0.00050	0.00046	*	*	0.0005	5
DOC	mg/L	4.0	3.4	3.2	3.5	3.5	5	4.0	3.5			3.8	0
Hard-D	mg/L	11.8	11.8	12.3	11.8	12.4	5	12.4	12.0			12.4	0
Fe-D	mg/L	0.0373	0.0354	0.0377	0.0419	0.0475	5	0.0475	0.0400		0.35	0.0453	0
Pb-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
Mg-D	mg/L	0.739	0.771	0.768	0.770	0.808	5	0.808	0.771			0.793	0
Mn-D	mg/L	0.0031	0.0038	0.0038	0.0044	0.0043	5	0.0044	0.0039			0.0044	0
Mo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ag-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100			0.000010	0
K-D	mg/L	0.054	0.053	0.054	0.059	0.05	5	0.059	0.054			0.057	0
S-D	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0
Se-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			0.00005	0
Na-D	mg/L	1.04	1.07	1.04	1.06	1.05	5	1.07	1.05			1.07	0
Sr-D	mg/L	0.0100	0.0101	0.011	0.0113	0.0104	5	0.0113	0.0106			0.0112	0
Zn-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
N-NO23	mg/L	<0.020	<0.020	0.022	<0.020	<0.020	5	0.022	0.0124			0.0172	0
Chlr-a	ug/L					0.81	1	0.81	0.81			0.81	0

Notes: *Calculated guideline. Refer to Exccedance Tables.
Factor applied to less-than results when calculating statistics: 0.5

Table 42 Spring Lakes 17 Page(s)

EMS ID		E217018								Water Quali	ty Guidelines		
tnName		No Name Lake 4M											Count of resul
tnCode		NNL4											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	<1.0	<1.0	1.2	1.3	1.2	5	1.3	0.94	128		1.26	0
urb	NTU	0.45	0.29	0.27	0.44	0.26	5	0.45	0.34			0.45	0
lk-T	mg/L	10	11	11	11	12	5	12	11.0			11.6	0
N-T	mg/L	0.0424	0.0406	0.0382	0.0375	0.0336	5	0.0424	0.0385	*		0.0417	0
\s-T	mg/L	0.00020	0.00022	0.00019	0.00023	0.00023	5	0.00023	0.00021	0.005		0.00023	0
i-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
a-T	mg/L	0.0010	<0.0010	0.0011	0.0010	<0.0010	5	0.0011	0.00082	1		0.00106	0
d-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
а-Т	mg/L	3.16	3.17	3.39	3.37	3.3	5	3.39	3.28			3.38	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	5	<0.00050	0.000250			0.00025	0
e-T	mg/L	0.047	0.043	0.046	0.050	0.048	5	0.050	0.047		1	0.049	0
ard-T	mg/L	10.7	10.8	11.4	11.5	11.2	5	11.5	11.1			11.5	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
1g-T	mg/L	0.676	0.708	0.718	0.734	0.715	5	0.734	0.710			0.728	0
1n-T	mg/L	0.0031	0.0033	0.0041	0.0040	0.0039	5	0.0041	0.0037	0.737	0.8706	0.0041	0
-T	mg/L	0.0066	0.0047	0.0043	0.0058	0.007	5	0.007	0.0057	0.015		0.0068	0
1o-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
i-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
-T	mg/L	0.051	<0.050	0.05	0.051	0.051	5	0.051	0.0456			0.051	0
Т	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0
:-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
a-T	mg/L	0.925	0.955	0.978	0.989	0.954	5	0.989	0.960			0.985	0
r-T	mg/L	0.0092	0.0094	0.0102	0.0101	0.0096	5	0.0102	0.0097			0.0102	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
I-D	mg/L	0.0399	0.0390	0.0371	0.0370	0.0305	5	0.0399	0.0367			0.0395	0
s-D	mg/L	0.00020	0.00022	0.00023	0.00023	0.00023	5	0.00023	0.00022			0.00023	0
a-D	mg/L	0.0010	0.0011	0.0011	0.0011	0.001	5	0.0011	0.0011			0.0011	0
-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
d-D	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
a-D	mg/L	3.54	3.56	3.73	3.76	3.68	5	3.76	3.65			3.75	0
l-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
r-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
0-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
u-D	mg/L	0.00047	0.00055	0.00045	0.00044	0.00044	5	0.00055	0.00047	*	*	0.00052	5
ос	mg/L	3.7	3.7	3.3	3.3	3.2	5	3.7	3.4			3.7	0
ard-D	mg/L	11.9	12.1	12.5	12.7	12.6	5	12.7	12.4			12.7	0
e-D	mg/L	0.0331	0.0347	0.0398	0.0405	0.0478	5	0.0478	0.0392		0.35	0.0449	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
lg-D	mg/L	0.736	0.771	0.782	0.797	0.821	5	0.821	0.781			0.811	0
1n-D	mg/L	0.0029	0.0032	0.004	0.0041	0.0043	5	0.0043	0.0037	1		0.0042	0
1o-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
i-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
g-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100			0.000010	0
D	mg/L	0.051	0.055	0.057	0.067	<0.050	5	0.067	0.0510	-		0.063	0
D	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50	-		1.5	0
e-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			0.000050	0
a-D	mg/L	1.03	1.06	1.05	1.05	1.03	5	1.06	1.04			1.06	0
-D	mg/L	0.0099	0.0103	0.0113	0.0110	0.0103	5	0.0113	0.0106	1		0.0112	0
1-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
-NO23	mg/L	<0.020	<0.020	0.041	<0.020	<0.020	5	0.041	0.0162			0.0286	0

Table 42 Spring Lakes 17 Page(s)

EMS ID		E217018								Water Quali	ty Guidelines		
tnName		No Name Lake 9M											Count of result
tnCode		NNL9											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	2.1	1.9	2.4	2.3	2.2	5	2.4	2.2	128		2.4	0
urb	NTU	0.62	0.68	0.38	0.38	0.26	5	0.68	0.46			0.66	0
lk-T	mg/L	12	10	10	10	10	5	12	10.4			11.2	0
l-T	mg/L	0.0446	0.0461	0.0451	0.0417	0.0404	5	0.0461	0.0436	*		0.0457	0
\s-T	mg/L	0.00017	0.00020	0.00015	0.00019	0.00019	5	0.00020	0.00018	0.005		0.0002	0
3-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
Ва-Т	mg/L	<0.0010	<0.0010	0.001	0.0010	0.001	5	0.001	0.00080	1		0.001	0
Cd-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
a-T	mg/L	3.19	3.28	3.44	3.18	3.28	5	3.44	3.27			3.38	0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
Cu-T	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	5	<0.00050	0.000250			0.00025	0
e-T	mg/L	0.054	0.059	0.058	0.052	0.051	5	0.059	0.055		1	0.059	0
lard-T	mg/L	10.7	11.1	11.4	10.7	11	5	11.4	11.0			11.3	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
Vlg-T	mg/L	0.667	0.703	0.683	0.672	0.678	5	0.703	0.681			0.695	0
VIn-T	mg/L	0.0036	0.0043	0.0043	0.0040	0.0038	5	0.0043	0.0040	0.737	0.8706	0.0043	0
P-T	mg/L	0.0043	0.0041	0.0047	0.0038	0.0065	5	0.0065	0.0047	0.015		0.0058	0
VIo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
(-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
6-T	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
Ag-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
Na-T	mg/L	0.863	0.911	0.938	0.909	0.906	5	0.938	0.905			0.927	0
ir-T	mg/L	0.0098	0.0103	0.0107	0.0100	0.0099	5	0.0107	0.0101			0.0105	0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
Al-D	mg/L	0.0506	0.0426	0.0414	0.0384	0.0352	5	0.0506	0.0416			0.0474	0
As-D	mg/L	0.00019	0.00020	0.00019	0.00021	0.0002	5	0.00021	0.00020			0.00021	0
Ba-D	mg/L	0.0011	0.0011	0.0011	0.0011	0.0011	5	0.0011	0.0011			0.0011	0
B-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
Cd-D	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
Ca-D	mg/L	3.74	3.60	3.83	3.69	3.61	5	3.83	3.69			3.79	0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	<u> </u>		0.0001	0
Cu-D	mg/L	0.00056	0.00049	0.00048	0.00040	0.00049	5	0.00056	0.00048	*	*	0.00053	5
ooc	mg/L	3.8	3.7	3.6	3.6	3.4	5	3.8	3.6			3.8	0
lard-D	mg/L	12.5	12.2	12.7	12.2	12.1	5	12.7	12.3	-		12.6	0
e-D	mg/L	0.0416	0.0318	0.0325	0.0333	0.0333	5	0.0416	0.0345	+	0.35	0.0383	0
Pb-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	+		0.0001	0
Mg-D	mg/L	0.764	0.769	0.756	0.723	0.756	5	0.769	0.754	+		0.767	0
Mn-D	mg/L	0.0035	0.0040	0.0038	0.0036	0.0035	5	0.0040	0.0037	+		0.0039	0
Mo-D Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	_	<0.0010	0.00050			0.0005	0
Ag-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	+		0.000010	0
(-D	mg/L	0.053	0.056	0.06	0.052	<0.050	5	0.06	0.0492 1.50	+		0.0584 1.5	0
5-D	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0		+			0
Se-D Na-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010 1.04	0.000050	+		0.000050	
	mg/L	1.04	1.02	1.03	0.952	0.976	5		1.004	+		1.036	0
ir-D	mg/L	0.0111	0.0113	0.0122	0.0113	0.0105	5	0.0122	0.0113	0.0075	0.033	0.0118	0
n-D N-NO23	mg/L	<0.0050 0.025	<0.0050 0.032	<0.0050 0.036	<0.0050	<0.0050 0.023	5	<0.0050	0.00250 0.043	0.0075	0.033	0.0025	0
4-INU23	mg/L	0.025	0.032	0.036	0.101	0.023	5	0.101	0.043			0.075	0

Table 42 Spring Lakes 17 Page(s)

MS ID		E217018								Water Quali	ty Guidelines		
tnName		No Name Lake Bottom											Count of resul
tnCode		NNLB											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	2.5	2.0	2.5	2.5	2.4	5	2.5	2.4	128		2.5	0
urb	NTU	0.57	0.39	0.3	1.1	0.35	5	1.1	0.54			0.89	0
lk-T	mg/L	10	10	10	10	9.8	5	10	10.0			10	0
I-T	mg/L	0.0464	0.0469	0.0438	0.0457	0.0428	5	0.0469	0.0451	*		0.0467	0
s-T	mg/L	0.00018	0.00020	0.00013	0.00020	0.00019	5	0.00020	0.00018	0.005		0.0002	0
·T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
a-T	mg/L	<0.0010	0.0010	0.001	0.0011	0.001	5	0.0011	0.00092	1		0.00106	0
J-t	mg/L	<0.00010	<0.000010	<0.000010	<0.000010	<0.00010	5	<0.000010	0.0000050			0.000005	0
a-T	mg/L	3.24	3.38	3.35	3.45	3.37	5	3.45	3.36			3.42	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
0-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	<0.00050	<0.00050	0.00063	0.00050	<0.00050	5	0.00063	0.000376			0.000578	0
e-T	mg/L	0.056	0.059	0.06	0.068	0.06	5	0.068	0.061		1	0.065	0
ard-T	mg/L	10.9	11.5	11.1	11.6	11.3	5	11.6	11.3			11.6	0
o-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
lg-T	mg/L	0.675	0.735	0.671	0.719	0.694	5	0.735	0.699			0.729	0
n-T	mg/L	0.0038	0.0045	0.0044	0.0046	0.004	5	0.0046	0.0043	0.737	0.8706	0.0046	0
Т	mg/L	0.0046	0.0038	0.0046	0.0038	0.0049	5	0.0049	0.0043	0.015		0.0048	0
lo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
i-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
Т	mg/L	<0.050	0.053	<0.050	0.052	<0.050	5	0.053	0.0360			0.0526	0
Т	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
а-Т	mg/L	0.875	0.960	0.875	0.946	0.919	5	0.960	0.915			0.954	0
-T	mg/L	0.0102	0.0107	0.0105	0.0110	0.0102	5	0.0110	0.0105			0.0109	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
l-D	mg/L	0.0424	0.0418	0.0415	0.0419	0.0364	5	0.0424	0.0408			0.0422	0
s-D	mg/L	0.00019	0.00020	0.0002	0.00020	0.0002	5	0.0002	0.00020			0.0002	0
a-D	mg/L	0.0011	0.0011	0.0011	<0.0010	0.001	5	0.0011	0.00096			0.0011	0
-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
d-D	mg/L	<0.00010	<0.000010	0.000014	<0.000010	<0.000010	5	0.000014	0.000068	0.000087	0.00017	0.000010	0
a-D	mg/L	3.78	3.58	3.82	3.89	3.6	5	3.89	3.73			3.86	0
l-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
u-D	mg/L	0.00050	0.00050	0.00049	0.00043	0.00048	5	0.00050	0.00048	*	*	0.0005	5
oc	mg/L	3.5	3.7	3.4	3.8	3.3	5	3.8	3.5	+		3.8	0
ard-D	mg/L	12.5	12.1	12.6	12.8	12.2	5	12.8	12.4	+		12.7	0
e-D	mg/L	0.0320	0.0318	0.0338	0.0385	0.0347	5	0.0385	0.0342	+	0.35	0.037	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	+		0.0001	0
lg-D	mg/L	0.752	0.769	0.753	0.758	0.771	5	0.771	0.761	+		0.77	0
ln-D	mg/L	0.0035	0.0040	0.0041	0.0040	0.0036	5	0.0041	0.0038			0.0041	0
lo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
g-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	+		0.000010	0
D	mg/L	0.053	0.055	0.061	0.055	<0.050	5	0.061	0.0498	+		0.0586	0
<u>D</u>	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50	+		1.5	0
-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	+		0.000050	0
a-D	mg/L	1.04	0.999	1.04	0.966	0.962	5	1.04	1.001	+		1.04	0
-D	mg/L	0.0112	0.0115	0.0126	0.0123	0.0108	5	0.0126	0.0117	0.0075	0.000	0.0125	0
1-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
NO23	mg/L	0.026	0.021	0.045	0.046	0.026	5	0.046	0.033	1		0.046	0

Table 42 Spring Lakes 17 Page(s)

EMS ID		E206619								Water Quali	y Guidelines		
StnName		Long Lake Middle 1 M									•		Count of results
StnCode		LLM1											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
604-D	mg/L	40	37	44	44	43	5	44	41.6	128		44	0
Turb	NTU	0.46	0.34	0.39	0.34	0.23	5	0.46	0.35			0.43	0
Alk-T	mg/L	22	25	24	25	23	5	25	23.8			25	0
Al-T	mg/L	0.0342	0.0327	0.0305	0.0256	0.0226	5	0.0342	0.0291	*		0.0336	0
As-T	mg/L	0.00029	0.00031	0.00028	0.00030	0.00031	5	0.00031	0.00030	0.005		0.00031	0
B-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
Ва-Т	mg/L	0.0035	0.0037	0.0043	0.0041	0.004	5	0.0043	0.0039	1		0.0042	0
Cd-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
Са-Т	mg/L	15.1	14.7	17.5	16.5	15.5	5	17.5	15.9			17.1	0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Со-Т	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
Cu-T	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	5	<0.00050	0.000250			0.00025	0
Fe-T	mg/L	0.052	0.054	0.051	0.043	0.041	5	0.054	0.048		1	0.053	0
Hard-T	mg/L	46.1	45.5	53.2	50.3	47.3	5	53.2	48.5			52	0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
Mg-T	mg/L	2.03	2.12	2.33	2.24	2.09	5	2.33	2.16			2.29	0
Mn-T	mg/L	0.0058	0.0064	0.0076	0.0069	0.0063	5	0.0076	0.0066	0.737	0.8706	0.0073	0
P-T	mg/L	0.0049	0.0044	0.0045	0.0032	0.0053	5	0.0053	0.0045	0.015		0.0051	0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
K-T	mg/L	0.169	0.170	0.19	0.185	0.176	5	0.19	0.178			0.188	0
S-T	mg/L	11.7	12.0	13.5	13.1	12	5	13.5	12.5			13.3	0
Se-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
Ag-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
Na-T	mg/L	4.31	4.23	4.89	4.63	4.4	5	4.89	4.49			4.79	0
Sr-T	mg/L	0.0901	0.0913	0.111	0.103	0.0946	5	0.111	0.0980			0.1078	0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
Al-D	mg/L	0.0309	0.0270	0.027	0.0235	0.0193	5	0.0309	0.0255			0.0293	0
As-D	mg/L	0.00029	0.00030	0.00031	0.00031	0.00034	5	0.00034	0.00031			0.00033	0
Ba-D	mg/L	0.0040	0.0038	0.0046	0.0044	0.0044	5	0.0046	0.0042			0.0045	0
B-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
Cd-D	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
Ca-D	mg/L	17.5	15.7	18.8	18.1	17.4	5	18.8	17.5			18.5	0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
Cu-D	mg/L	0.00047	0.00039	0.00041	0.00036	0.00039	5	0.00047	0.00040	*	*	0.00045	5
DOC	mg/L	3.6	3.6	3.4	3.4	3.3	5	3.6	3.5			3.6	0
Hard-D	mg/L	52.9	48.2	56.9	55.6	52.8	5	56.9	53.3			56.4	0
Fe-D	mg/L	0.0414	0.0358	0.0335	0.0305	0.0304	5	0.0414	0.0343		0.35	0.0392	0
Pb-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
Mg-D	mg/L	2.23	2.16	2.45	2.53	2.29	5	2.53	2.33			2.5	0
Mn-D	mg/L	0.0059	0.0055	0.0059	0.0052	0.0043	5	0.0059	0.0054			0.0059	0
Mo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ag-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100			0.000010	0
K-D	mg/L	0.190	0.175	0.208	0.210	0.19	5	0.210	0.195			0.209	0
S-D	mg/L	13.1	12.2	14.8	15.0	13.3	5	15.0	13.7			14.9	0
Se-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			0.000050	0
Na-D	mg/L	4.85	4.36	5.18	5.40	4.94	5	5.40	4.95			5.31	0
Gr-D	mg/L	0.102	0.0945	0.112	0.114	0.106	5	0.114	0.1057			0.1132	0
Zn-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
N-NO23	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	5	<0.020	0.0100			0.01	0
Chlr-a	ug/L					0.6	1	0.6	0.6			0.6	0

Notes: *Calculated guideline. Refer to Exccedance Tables.
Factor applied to less-than results when calculating statistics: 0.5

Table 42 Spring Lakes 17 Page(s)

EMS ID		E206619								Water Quali	ty Guidelines		
StnName		Long Lake Middle 4 M											Count of results
StnCode		LLM4											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	48	58	60	63	58	5	63	57.4	128		61.8	0
Turb	NTU	0.46	0.51	0.54	0.50	0.29	5	0.54	0.46			0.53	0
Alk-T	mg/L	25	28	28	29	28	5	29	27.6			28.6	0
Al-T	mg/L	0.0385	0.0318	0.0301	0.0278	0.0241	5	0.0385	0.0305	*		0.0358	0
As-T	mg/L	0.00034	0.00032	0.00027	0.00030	0.00031	5	0.00034	0.00031	0.005		0.00033	0
В-Т	mg/L	0.051	0.050	0.052	<0.050	<0.050	5	0.052	0.0406	1.2		0.0516	0
Ва-Т	mg/L	0.0045	0.0050	0.0052	0.0054	0.0049	5	0.0054	0.0050	1		0.0053	0
Cd-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.00010	0.0000050			0.000005	0
Са-Т	mg/L	20.0	22.2	23	22.7	19.5	5	23	21.5			22.9	0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Со-Т	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
Cu-T	mg/L	0.00055	<0.00050	<0.00050	<0.00050	<0.00050	5	0.00055	0.000310			0.00043	0
Fe-T	mg/L	0.062	0.058	0.059	0.057	0.048	5	0.062	0.057		1	0.061	0
Hard-T	mg/L	60.2	67.8	69.4	68.6	59.4	5	69.4	65.1			69.1	0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
Mg-T	mg/L	2.51	3.00	2.93	2.90	2.61	5	3.00	2.79			2.97	0
Mn-T	mg/L	0.0083	0.0123	0.0131	0.0126	0.0091	5	0.0131	0.0111	0.737	0.8706	0.0129	0
P-T	mg/L	0.0035	0.0043	0.0039	0.0036	0.0049	5	0.0049	0.0040	0.015		0.0047	0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
K-T	mg/L	0.220	0.250	0.245	0.254	0.222	5	0.254	0.238			0.252	0
S-T	mg/L	16.1	19.6	19.3	19.4	16.6	5	19.6	18.2			19.5	0
Se-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
Ag-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
Na-T	mg/L	5.67	6.47	6.49	6.48	5.62	5	6.49	6.15		0.000	6.49	0
Sr-T	mg/L	0.122	0.149	0.155	0.151	0.127	5	0.155	0.141			0.153	0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
Al-D	mg/L	0.0299	0.0264	0.0254	0.0223	0.0189	5	0.0299	0.0246		0.000	0.0285	0
As-D	mg/L	0.00030	0.00031	0.00029	0.00029	0.00033	5	0.00033	0.00030			0.00032	0
Ba-D	mg/L	0.0046	0.0054	0.0053	0.0056	0.0054	5	0.0056	0.0053			0.0055	0
B-D	mg/L	<0.050	0.053	0.052	0.054	<0.050	5	0.054	0.0418			0.0536	0
Cd-D	mg/L	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
Ca-D	mg/L	20.0	25.2	24.3	24.8	22	5	25.2	23.3	0.000007	0.00017	25	0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	150	000	0.0005	0
Co-D	mg/L	<0.0020	<0.0020	<0.00020	<0.00020	<0.00020	5	<0.0020	0.000100			0.0001	0
Cu-D	mg/L	0.00038	0.00042	0.00042	0.00020	0.00039	5	0.00042	0.00040	*	*	0.00042	5
DOC	mg/L	3.7	4.3	3.4	3.5	3.5	5	4.3	3.7			4.1	0
Hard-D	mg/L	59.9	75.4	73.4	75.4	66.7	5	75.4	70.2			75.4	0
Fe-D	mg/L	0.0436	0.0403	0.0344	0.0319	0.0345	5	0.0436	0.0369		0.35	0.0423	0
Pb-D	mg/L	<0.0020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100		0.55	0.0001	0
Mg-D	mg/L	2.45	3.07	3.09	3.29	2.85	5	3.29	2.95			3.21	0
Mn-D	mg/L	0.0074	0.0108	0.0098	0.0085	0.0053	5	0.0108	0.0084			0.0104	0
Mo-D	mg/L	<0.0074	<0.0108	<0.0010	<0.0010	<0.0033	5	<0.0108	0.00050			0.0104	0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ag-D	mg/L	<0.0010	<0.0000	<0.0010	<0.0010	<0.0000	5	<0.0010	0.00030			0.0003	0
K-D	mg/L	0.220	0.269	0.261	0.278	0.238	5	0.278	0.253			0.00010	0
S-D	mg/L	16.0	20.6	19.7	22.1	17.8	5	22.1	19.2			21.5	0
Se-D		<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5		0.000050	+		0.000050	0
	mg/L	<0.00010 5.54						<0.00010		+			
Na-D	mg/L	0.124	6.87 0.157	6.69 0.165	7.30	6.19	5	7.30	6.52 0.149	+		7.13	0
Sr-D	mg/L	0.124 <0.0050	<0.157	0.165 <0.0050	0.167 <0.0050	0.133	5	0.167	0.149	0.0075	0.022	0.166 0.0025	0
Zn-D	mg/L					<0.0050	5	<0.0050		0.0075	0.033		0
N-NO23	mg/L	<0.020 guideline. Refer to Exce	<0.020	<0.020	<0.020	<0.020	5	<0.020	0.0100	1		0.01	0

Factor applied to less-than results when calculating statistics: 0.5

Table 42 Spring Lakes 17 Page(s)

EMS ID		E206619								Water Quali	ty Guidelines		
StnName		Long Lake Middle 9 M											Count of results
StnCode		LLM9											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	76	76	84	83	86	5	86	81.0	128		85.2	0
urb	NTU	0.35	0.43	0.39	0.63	0.3	5	0.63	0.42			0.55	0
Alk-T	mg/L	33	34	34	34	34	5	34	33.8			34	0
AI-T	mg/L	0.0340	0.0278	0.0274	0.0268	0.0249	5	0.0340	0.0282	*		0.0315	0
As-T	mg/L	0.00031	0.00027	0.00026	0.00029	0.00025	5	0.00031	0.00028	0.005		0.0003	0
3-T	mg/L	0.071	0.062	0.069	0.069	0.059	5	0.071	0.066	1.2		0.07	0
За-Т	mg/L	0.0059	0.0060	0.0061	0.0061	0.0057	5	0.0061	0.0060	1		0.0061	0
Cd-T	mg/L	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
Ca-T	mg/L	30.8	30.1	31.1	31.2	28.7	5	31.2	30.4			31.2	0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
Cu-T	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	5	<0.00050	0.000250			0.00025	0
e-T	mg/L	0.058	0.050	0.053	0.054	0.045	5	0.058	0.052		1	0.056	0
Hard-T	mg/L	91.8	89.4	92.6	93.6	86.4	5	93.6	90.8			93.2	0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
Mg-T	mg/L	3.61	3.48	3.65	3.80	3.57	5	3.80	3.62			3.74	0
Mn-T	mg/L	0.0311	0.0341	0.0371	0.0368	0.0331	5	0.0371	0.0344	0.737	0.8706	0.037	0
P-T	mg/L	0.0036	0.0047	0.0048	0.0032	0.0039	5	0.0048	0.0040	0.015		0.0048	0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
K-T	mg/L	0.338	0.331	0.334	0.339	0.32	5	0.339	0.332			0.339	0
S-T	mg/L	26.7	27.4	26.4	26.5	24.9	5	27.4	26.4			27.1	0
Se-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
Ag-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
Na-T	mg/L	9.08	8.50	8.86	8.73	8.43	5	9.08	8.72			8.99	0
Sr-T	mg/L	0.196	0.198	0.212	0.205	0.193	5	0.212	0.201			0.209	0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
Al-D	mg/L	0.0252	0.0240	0.0234	0.0229	0.02	5	0.0252	0.0231			0.0247	0
As-D	mg/L	0.00028	0.00028	0.00026	0.00026	0.00027	5	0.00028	0.00027			0.00028	0
Ba-D	mg/L	0.0061	0.0064	0.0065	0.0063	0.0064	5	0.0065	0.0063			0.0065	0
B-D	mg/L	0.061	0.071	0.068	0.075	0.06	5	0.075	0.067			0.073	0
Cd-D	mg/L	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
Ca-D	mg/L	31.6	31.4	32.8	32.7	31.9	5	32.8	32.1	0.000007	0.00017	32.8	0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	150	555	0.0005	0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
Cu-D	mg/L	0.00040	0.00040	0.00041	0.00058	0.00044	5	0.00058	0.00045	*	*	0.00052	5
DOC	mg/L	3.9	3.7	3.5	3.4	3.8	5	3.9	3.7			3.9	0
Hard-D	mg/L	93.8	94.5	98.2	98.2	95.8	5	98.2	96.1			98.2	0
Fe-D	mg/L	0.0367	0.0319	0.0311	0.0304	0.0318	5	0.0367	0.0324		0.35	0.0348	0
Pb-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100		5.55	0.0001	0
Mg-D	mg/L	3.63	3.91	3.94	4.01	3.91	5	4.01	3.88			3.98	0
Mn-D	mg/L	0.0283	0.0310	0.033	0.0323	0.0298	5	0.033	0.0309			0.0327	0
Mo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ag-D	mg/L	<0.0010	<0.00000	<0.0010	<0.0010	<0.0000	5	<0.0010	0.00030			0.000010	0
K-D	mg/L	0.344	0.359	0.359	0.370	0.35	5	0.370	0.356			0.366	0
S-D	mg/L	26.8	28.7	28.2	28.6	27.3	5	28.7	27.9			28.7	0
Se-D	mg/L mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			0.000050	0
Se-บ Na-D	mg/L mg/L	9.07	9.54	9.5	9.61	9.46	5	9.61	9.44	1		9.58	0
Sr-D	mg/L mg/L	0.203	0.215	0.234	0.219	0.21	5	0.234	0.216	+		0.228	0
Zn-D	mg/L mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.228	0
N-NO23	mg/L mg/L	0.033	0.030	0.0050	0.0050	0.036	5	0.055	0.00250	0.0075	0.055	0.0025	0
		guideline. Refer to Exce		0.055	0.055	0.030	3	0.055	0.041	1		0.034	1 0

Factor applied to less-than results when calculating statistics: 0.5

Table 42 Spring Lakes 17 Page(s)

EMS ID		E206619								Water Quali	y Guidelines		
StnName	Lo	ong Lake Middle 1M Fro	om B										Count of result
tnCode		LLMB											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
604-D	mg/L	83	53	86	84	86	5	86	78.4	128		86	0
Γurb	NTU	0.48	0.38	0.48	0.69	0.4	5	0.69	0.49			0.61	0
Alk-T	mg/L	34	27	34	34	35	5	35	32.8			34.6	0
AI-T	mg/L	0.0232	0.0296	0.0264	0.0255	0.0255	5	0.0296	0.0260	*		0.0283	0
As-T	mg/L	0.00028	0.00027	0.00026	0.00025	0.0003	5	0.0003	0.00027	0.005		0.00029	0
В-Т	mg/L	0.075	<0.050	0.07	0.062	0.062	5	0.075	0.0588	1.2		0.073	0
Ва-Т	mg/L	0.0062	0.0047	0.0061	0.0055	0.0063	5	0.0063	0.0058	1		0.0063	0
Cd-T	mg/L	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
Са-Т	mg/L	32.1	21.6	29.4	28.1	29.9	5	32.1	28.2			31.2	0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
Cu-T	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	5	<0.00050	0.000250			0.00025	0
e-T	mg/L	0.032	0.048	0.051	0.053	0.059	5	0.059	0.049		1	0.057	0
Hard-T	mg/L	95.7	64.1	88.7	84.3	89.5	5	95.7	84.5			93.2	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
∕lg-T	mg/L	3.76	2.48	3.73	3.42	3.63	5	3.76	3.40			3.75	0
VIn-T	mg/L	0.0346	0.0194	0.0406	0.0378	0.0543	5	0.0543	0.0373	0.737	0.8706	0.0488	0
P-T	mg/L	<0.0030	0.0038	0.0053	0.0045	0.0049	5	0.0053	0.00400	0.015		0.00514	0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
K-T	mg/L	0.354	0.239	0.327	0.308	0.335	5	0.354	0.313			0.346	0
-T	mg/L	28.9	17.2	26.4	23.9	26	5	28.9	24.5			27.9	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002	0.0004	0.000050	0
\g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
la-T	mg/L	9.58	6.01	8.85	8.29	8.88	5	9.58	8.32			9.3	0
ir-T	mg/L	0.207	0.137	0.22	0.191	0.203	5	0.22	0.192	0.0075	0.022	0.215	0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
Al-D	mg/L	0.0306	0.0270	0.0234	0.0207	0.0185	5	0.0306	0.0240			0.0292	0
As-D	mg/L	0.00031	0.00030	0.00033	0.00026	0.00028	5	0.00033	0.00030			0.00032	0
Ba-D	mg/L	0.0070	0.0048	0.0066	0.0062	0.0067	5	0.0070	0.0063			0.0069	0
3-D	mg/L	0.068	0.051	0.073	0.074	0.061	5		0.065	0.000007	0.00047	0.074	0
Cd-D	mg/L	<0.000010 34.4	<0.00010 20.9	0.000074	<0.000010	<0.000010	5	0.000074 34.5	0.0000188	0.000087	0.00017	0.000046	0
Ca-D CI-D	mg/L		20.9 <1.0	34.5 <1.0	32.2	32.2	5		30.8 0.50	150	600	34.5	
	mg/L	<1.0	<0.0010		<1.0	<1.0 <0.0010	5	<1.0 <0.0010	-	150	600	0.5	0
Cr-D Co-D	mg/L	<0.0010 <0.00020	<0.0010	<0.0010 <0.00020	<0.0010 <0.00020	<0.0010	5	<0.0010	0.00050 0.000100			0.0005 0.0001	0
.o-ม Cu-D	mg/L								1	*	*		5
OC	mg/L mg/L	0.00040 4.2	0.00040 3.6	0.00061 3.4	0.00036 3.9	0.00038 3.7	5	0.00061 4.2	0.00043 3.8	+		0.00053 4.1	0
			63.8				5	103	3.8 92.4	+			0
lard-D	mg/L	102 0.0334	0.0354	103 0.0322	96.4 0.0301	96.7 0.0319		0.0354	0.0326	+	0.35	102.6	0
e-D b-D	mg/L		<0.0020	<0.0020			5		0.00326	+	0.35	0.0346	0
ט-מי Mg-D	mg/L	<0.00020 3.90	2.79	4.07	<0.00020 3.91	<0.00020 3.93	5	<0.00020 4.07	3.72	+		0.0001 4.01	0
VIG-D VIn-D	mg/L mg/L	0.0434	0.0140	0.0376	0.0340	0.0491	5	0.0491	0.0356	+		0.0468	0
Mo-D	mg/L mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0468	0
ло-D li-D	mg/L mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
Ng-D	mg/L mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.000010	0
(g-D (-D	mg/L mg/L	0.379	0.240	0.402	0.353	0.356	5	0.402	0.346	+		0.393	0
-D	mg/L mg/L	30.0	17.8	28.9	28.2	0.356	5	30.0	26.4	+		29.6	0
ie-D	mg/L mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	+		0.000050	0
la-D		10.0	6.20	9.83	9.42	9.53	5	<0.00010 10.0	9.00	+		9.93	0
r-D	mg/L	0.228	0.136	0.241	0.216	0.207	5	0.241	0.206	+		0.236	0
	mg/L									0.0075	0.022		1
n-D N-NO23	mg/L	<0.0050 0.042	<0.0050	<0.0050 0.072	<0.0050 0.055	<0.0050 0.049	5	<0.0050 0.072	0.00250 0.0456	0.0075	0.033	0.0025	0
4-INU23	mg/L	0.042	<0.020	0.072	0.055	0.049) 5	0.072	0.0456	1		0.0652	0

Table 42 Spring Lakes 17 Page(s)

EMS ID		E206618								Water Quali	ty Guidelines		
StnName		Middle Quinsam Lake 1	и								.,		Count of result
tnCode		MQL1											exceeding
tilcoue		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	25	21	19	20	21	5	25	21.2	128		23.4	0
urb	NTU	0.41	0.27	0.5	0.24	0.27	5	0.5	0.34	120		0.46	0
Alk-T	mg/L	37	35	35	36	37	5	37	36.0			37	0
AI-T	mg/L	0.0166	0.0175	0.0151	0.0137	0.0151	5	0.0175	0.0156	*		0.0171	0
As-T	mg/L	<0.00010	0.00011	0.00011	<0.0010	0.00012	5	0.00012	0.00088	0.005		0.001116	0
3-T	mg/L	<0.0010	<0.050	<0.050	<0.0010	<0.050	5	<0.050	0.00008	1.2		0.00116	0
3-1 Ba-T				0.0014								0.025	-
	mg/L	0.0016	0.0014		0.0013	0.0015	5	0.0016	0.0014	1			0
d-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010		<0.000010	0.0000050			0.000005	0
a-T	mg/L	10.1	9.96	9.07	9.03	10	5	10.1	9.63			10.06	0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
ù-T	mg/L	0.00050	<0.00050	0.00056	0.00050	0.00055	5	0.00056	0.000472			0.000556	0
e-T	mg/L	0.024	0.024	0.021	0.022	0.023	5	0.024	0.023		1	0.024	0
lard-T	mg/L	30.6	29.6	27.1	27.2	30.1	5	30.6	28.9			30.4	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
Vlg-T	mg/L	1.31	1.16	1.09	1.13	1.25	5	1.31	1.19			1.29	0
VIn-T	mg/L	0.0033	0.0037	0.0034	0.0036	0.0035	5	0.0037	0.0035	0.737	0.8706	0.0037	0
P-T	mg/L	<0.0030	< 0.0030	0.01	<0.0030	<0.0030	5	0.01	0.00320	0.015		0.0066	0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
(-T	mg/L	0.191	0.180	0.167	0.162	0.185	5	0.191	0.177			0.189	0
-Т	mg/L	7.6	5.2	5.5	5.8	6.4	5	7.6	6.1			7.1	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
Ag-T	mg/L	<0.00020	<0.000020	<0.00020	<0.00020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
<u>ъ</u>	mg/L	11.4	10.0	8.84	9.36	10.6	5	11.4	10.04	0.00003	0.0001	11.08	0
ir-T	mg/L	0.0500	0.0496	0.0433	0.0409	0.0467	5	0.0500	0.0461			0.0498	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
Al-D	mg/L	0.0159	0.0146	0.0153	0.0137	0.012	5	0.0159	0.00230	0.0075	0.055	0.0025	0
As-D		0.0159		0.0001	0.00137		5		0.00143			0.00137	0
	mg/L	0.00012	0.00012 0.0015	0.0001	0.00010	0.00011 0.0015		0.00012 0.0017	0.00011			0.00012	
Ba-D	mg/L						5						0
3-D	mg/L	<0.050	0.103	<0.050	<0.050	<0.050	5	0.103	0.0406			0.0718	0
Cd-D	mg/L	<0.000010	<0.00010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
Ca-D	mg/L	11.9	11.9	10.3	10.8	10.5	5	11.9	11.1			11.9	0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
Cu-D	mg/L	0.00054	0.00052	0.00058	0.00052	0.00055	5	0.00058	0.00054	*	*	0.00057	5
ООС	mg/L	2.4	2.3	2.3	2.3	2.2	5	2.4	2.3			2.4	0
lard-D	mg/L	35.5	34.9	30.9	32.3	31.7	5	35.5	33.1			35.3	0
e-D	mg/L	0.0165	0.0200	0.0165	0.0157	0.0162	5	0.0200	0.0170		0.35	0.0186	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
∕lg-D	mg/L	1.40	1.26	1.24	1.30	1.32	5	1.40	1.30			1.37	0
√ln-D	mg/L	0.0022	0.0023	0.0018	0.0016	0.002	5	0.0023	0.0020			0.0023	0
Mo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ag-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.0000100			0.000010	0
(-D	mg/L	0.212	0.184	0.178	0.191	0.188	5	0.212	0.191			0.204	0
-D	mg/L	8.7	6.9	6.8	7.1	6.8	5	8.7	7.3			8.1	0
Se-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			0.000050	0
la-D		13.1	10.5	10.2	11.2	11.1	5	13.1	11.2	1		12.3	0
ir-D	mg/L	0.0559	0.0471	0.0489	0.0474	0.0473	5	0.0559	0.0493			0.0531	0
	mg/L									0.0075	0.022		
n-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
N-NO23	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	5	<0.020	0.0100	1		0.01	0
Chir-a Notes: *(ug/L	d guideline. Refer to Exco			1	0.61	1	0.61	0.61			0.61	0

Notes: *Calculated guideline. Refer to Exceedance Tables.
Factor applied to less-than results when calculating statistics: 0.5

Table 42 Spring Lakes 17 Page(s)

EMS ID		E206618								Water Quali	ty Guidelines		
tnName		Middle Quinsam Lake 4N	1										Count of resul
tnCode		MQL4											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	25	21	19	20	21	5	25	21.2	128		23.4	0
urb	NTU	0.36	0.27	0.29	0.25	0.19	5	0.36	0.27			0.33	0
lk-T	mg/L	38	35	33	36	37	5	38	35.8			37.6	0
I-T	mg/L	0.0171	0.0163	0.0155	0.0148	0.014	5	0.0171	0.0155	*		0.0168	0
s-T	mg/L	<0.00010	<0.00010	0.00012	0.00011	0.00011	5	0.00012	0.000088	0.005		0.000116	0
·T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
a-T	mg/L	0.0016	0.0014	0.0014	0.0014	0.0014	5	0.0016	0.0014	1		0.0015	0
t-t	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	5	<0.000010	0.0000050			0.000005	0
a-T	mg/L	10.5	9.60	9.14	9.31	9.67	5	10.5	9.64			10.17	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
0-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	0.00056	<0.00050	0.00052	0.00052	0.00053	5	0.00056	0.000476			0.000548	0
e-T	mg/L	0.025	0.023	0.022	0.026	0.023	5	0.026	0.024		1	0.026	0
ard-T	mg/L	31.7	28.4	27.4	28.1	29.2	5	31.7	29.0			30.7	0
o-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
lg-T	mg/L	1.32	1.08	1.1	1.17	1.23	5	1.32	1.18			1.28	0
ln-T	mg/L	0.0034	0.0036	0.0035	0.0039	0.0037	5	0.0039	0.0036	0.737	0.8706	0.0038	0
-Т	mg/L	0.0030	<0.0030	0.0034	<0.0030	0.003	5	0.0034	0.00248	0.015		0.00324	0
lo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
i-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
т	mg/L	0.194	0.169	0.158	0.172	0.181	5	0.194	0.175			0.189	0
Т	mg/L	7.8	7.3	6	6.1	6.7	5	7.8	6.8			7.6	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
a-T	mg/L	11.5	9.53	9.07	9.84	10.4	5	11.5	10.07			11.06	0
-T	mg/L	0.0512	0.0475	0.0428	0.0442	0.0464	5	0.0512	0.0464			0.0497	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
l-D	mg/L	0.0172	0.0148	0.0152	0.0138	0.0117	5	0.0172	0.0145			0.0164	0
s-D	mg/L	0.00011	0.00011	<0.00010	0.00011	0.00011	5	0.00011	0.000098			0.00011	0
a-D	mg/L	0.0017	0.0015	0.0015	0.0014	0.0015	5	0.0017	0.0015			0.0016	0
-D	mg/L	<0.050	0.065	<0.050	0.052	<0.050	5	0.065	0.0384			0.0598	0
d-D	mg/L	<0.000010	<0.000010	<0.00010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
a-D	mg/L	11.6	10.4	10.5	10.5	10.4	5	11.6	10.7			11.2	0
l-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
r-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
u-D	mg/L	0.00054	0.00052	0.00055	0.00052	0.00056	5	0.00056	0.00054	*	*	0.00056	5
oc	mg/L	2.6	2.4	2.3	2.2	2.1	5	2.6	2.3			2.5	0
ard-D	mg/L	34.8	31.1	31.5	31.7	31.3	5	34.8	32.1			33.6	0
e-D	mg/L	0.0182	0.0172	0.0158	0.0146	0.0161	5	0.0182	0.0164		0.35	0.0178	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	-		0.0001	0
lg-D	mg/L	1.40	1.25	1.27	1.35	1.31	5	1.40	1.32			1.38	0
ln-D	mg/L	0.0022	0.0023	0.0015	<0.0010	0.0015	5	0.0023	0.00160			0.00226	0
o-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	-		0.0005	0
-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
g-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	+		0.000010	0
D	mg/L	0.212	0.184	0.18	0.188	0.186	5	0.212	0.190	+		0.202	0
<u>D</u>	mg/L	8.7	6.8	6.9	6.8	6.7	5	8.7	7.2	+		8	0
-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	+		0.000050	0
a-D	mg/L	13.1	10.5	10.3	11.3	11.4	5	13.1	11.3	+		12.4	0
r-D	mg/L	0.0584	0.0475	0.0488	0.0482	0.0481	5	0.0584	0.0502	0.0075	0.000	0.0546	0
1-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
-NO23	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	5	< 0.020	0.0100	1	1	0.01	0

Table 42 Spring Lakes 17 Page(s)

EMS ID		E206618								Water Quali	ty Guidelines		
tnName		Middle Quinsam Lake 9N	1										Count of resul
tnCode		MQL9											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	24	24	24	23	23	5	24	23.6	128		24	0
urb	NTU	0.30	0.29	0.24	0.82	0.21	5	0.82	0.37			0.61	0
lk-T	mg/L	36	36	36	36	36	5	36	36.0			36	0
\I-T	mg/L	0.0171	0.0150	0.0137	0.0153	0.013	5	0.0171	0.0148	*		0.0164	0
\s-T	mg/L	<0.00010	0.00010	<0.00010	0.00011	0.00011	5	0.00011	0.000084	0.005		0.00011	0
3-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
а-Т	mg/L	0.0016	0.0017	0.0016	0.0016	0.0015	5	0.0017	0.0016	1		0.0017	0
d-T	mg/L	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
а-Т	mg/L	10.3	10.0	10.1	10.5	9.93	5	10.5	10.17			10.42	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-T	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	5	<0.0020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	0.00051	<0.00050	0.00053	<0.00050	<0.00050	5	0.00053	0.000358	0.004	0.11	0.000522	0
e-T	mg/L	0.022	0.020	0.019	0.020	0.017	5	0.022	0.020		1	0.021	0
lard-T	mg/L	31.1	29.7	30.4	31.7	29.9	5	31.7	30.6		-	31.5	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
/lg-T	mg/L	1.31	1.13	1.28	1.33	1.25	5	1.33	1.26	0.004	0.0170	1.32	0
/ng−1 /In-T	mg/L	0.0025	0.0029	0.0031	0.0031	0.0026	5	0.0031	0.0028	0.737	0.8706	0.0031	0
-T	mg/L	0.0040	<0.0025	<0.0031	0.0031	0.0020	5	0.0031	0.00290	0.015	0.0700	0.00424	0
ло-Т	mg/L	<0.0010	<0.0030	<0.0030	<0.0010	<0.0031	5	<0.0010	0.00050	7.6	46	0.00424	0
											40		0
li-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	
-T	mg/L	0.181	0.175	0.173	0.184	0.169	5	0.184	0.176			0.183	0
-T	mg/L	7.5	8.6	7	7.5	6.9	5	8.6	7.5			8.2	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
la-T	mg/L	10.8	10.3	10.7	10.8	10.3	5	10.8	10.6			10.8	0
r-T	mg/L	0.0486	0.0516	0.0511	0.0495	0.0462	5	0.0516	0.0494			0.0514	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
II-D	mg/L	0.0158	0.0149	0.0144	0.0128	0.0104	5	0.0158	0.0137			0.0154	0
ls-D	mg/L	0.00011	0.00011	0.00012	<0.00010	0.00012	5	0.00012	0.000102			0.00012	0
a-D	mg/L	0.0017	0.0017	0.0017	0.0016	0.0016	5	0.0017	0.0017			0.0017	0
-D	mg/L	<0.050	0.057	<0.050	0.053	<0.050	5	0.057	0.0370			0.0554	0
d-D	mg/L	<0.000010	<0.000010	<0.00010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
a-D	mg/L	11.8	11.0	11.5	11.2	10.8	5	11.8	11.3			11.7	0
I-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
r-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
u-D	mg/L	0.00050	0.00058	0.00049	0.00049	0.00051	5	0.00058	0.00051	*	*	0.00055	5
ОС	mg/L	2.5	2.7	2.2	2.5	2.3	5	2.7	2.4			2.6	0
ard-D	mg/L	35.1	33.1	34.7	33.6	32.6	5	35.1	33.8			34.9	0
e-D	mg/L	0.0151	0.0146	0.0122	0.0112	0.0103	5	0.0151	0.0127		0.35	0.0149	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
/lg-D	mg/L	1.38	1.38	1.44	1.40	1.36	5	1.44	1.39			1.42	0
/ln-D	mg/L	0.0013	0.0012	<0.0010	<0.0010	<0.0010	5	0.0013	0.00080			0.00126	0
∕lo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
li-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
g-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100			0.000010	0
-D	mg/L	0.199	0.194	0.204	0.188	0.181	5	0.204	0.193			0.202	0
-D	mg/L	8.8	7.9	8.5	8.1	7.2	5	8.8	8.1			8.7	0
e-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			0.000050	0
la-D	mg/L	12.4	11.7	12.4	11.6	11.5	5	12.4	11.9			12.4	0
r-D	mg/L	0.0527	0.0526	0.0573	0.0512	0.0484	5	0.0573	0.0524			0.0555	0
n-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
-NO23	mg/L	<0.020	<0.020	<0.020	<0.020	0.073	5	0.073	0.0226			0.0478	0
		d guideline. Refer to Excce	2.320						1.0220			2.3.70	

Table 42 Spring Lakes 17 Page(s)

EMS ID		E206618								Water Qualit	y Guidelines		
StnName		Middle Quinsam Lake 1	MB										Count of results
StnCode		MQLB											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
604-D	mg/L	25	24	25	25	25	5	25	24.8	128		25	0
Turb	NTU	0.32	0.30	0.42	0.41	0.35	5	0.42	0.36			0.42	0
Alk-T	mg/L	36	36	39	36	36	5	39	36.6			37.8	0
AI-T	mg/L	0.0170	0.0168	0.0129	0.0141	0.0129	5	0.0170	0.0147	*		0.0169	0
As-T	mg/L	<0.00010	0.00011	<0.00010	<0.00010	0.0001	5	0.00011	0.000072	0.005		0.000106	0
B-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
Ba-T	mg/L	0.0017	0.0018	0.0015	0.0017	0.0016	5	0.0018	0.0017	1		0.0018	0
d-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
а-Т	mg/L	10.5	10.6	9.99	10.3	10.3	5	10.6	10.34			10.56	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
о-Т	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	<0.00050	<0.00050	0.00056	<0.00050	<0.00050	5	0.00056	0.000312			0.000436	0
e-T	mg/L	0.023	0.020	0.018	0.022	0.019	5	0.023	0.020		1	0.023	0
lard-T	mg/L	32.0	31.6	30.1	31.3	31.2	5	32.0	31.2			31.8	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
/lg-T	mg/L	1.40	1.25	1.26	1.36	1.33	5	1.40	1.32			1.38	0
∕In-T	mg/L	0.0026	0.0030	0.0038	0.0051	0.0039	5	0.0051	0.0037	0.737	0.8706	0.0046	0
-Т	mg/L	<0.0030	0.0031	<0.0030	0.0033	<0.0030	5	0.0033	0.00218	0.015		0.00322	0
/lo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
(-T	mg/L	0.179	0.171	0.174	0.176	0.177	5	0.179	0.175			0.178	0
-Т	mg/L	7.8	7.8	8.1	7.4	7.3	5	8.1	7.7			8	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
\g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
la-T	mg/L	10.6	10.7	10.4	10.6	10.6	5	10.7	10.6			10.7	0
ir-T	mg/L	0.0484	0.0534	0.0498	0.0474	0.0473	5	0.0534	0.0493			0.052	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
AI-D	mg/L	0.0157	0.0134	0.014	0.0118	0.0098	5	0.0157	0.0129			0.015	0
\s-D	mg/L	0.00010	0.00011	0.0001	<0.00010	<0.00010	5	0.00011	0.000082			0.000106	0
Ba-D	mg/L	0.0017	0.0017	0.0018	0.0019	0.0017	5	0.0019	0.0018			0.0019	0
3-D	mg/L	<0.050	0.054	<0.050	0.053	<0.050	5	0.054	0.0364			0.0536	0
Cd-D	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
Ca-D	mg/L	11.9	11.3	12	12.0	11.4	5	12.0	11.7			12	0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	*	*	0.0001	0
Cu-D	mg/L	0.00051	0.00051	0.00059	0.00048	0.00051	5	0.00059	0.00052	*	*	0.00056	5
ooc	mg/L	2.6	2.4	2.5	2.2	2.4	5	2.6	2.4			2.6	0
lard-D	mg/L	35.7	34.1	36.2	36.5	34.5	5	36.5	35.4		0.7-	36.4	0
e-D	mg/L	0.0144	0.0130	0.0148	0.0116	0.0108	5	0.0148	0.0129		0.35	0.0146	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
/lg-D	mg/L	1.47	1.45	1.53	1.55	1.45	5	1.55	1.49			1.54	0
/ln-D	mg/L	0.0012	<0.0010	0.0012	<0.0010	<0.0010	5	0.0012	0.00078			0.0012	0
lo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
i-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
g-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100			0.000010	0
-D	mg/L	0.192	0.188	0.2	0.193	0.185	5	0.2	0.192			0.197	0
-D	mg/L	8.1	8.0	9.2	8.5	7.8	5	9.2	8.3			8.9	0
e-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			0.000050	0
la-D	mg/L	11.9	11.4	12.3	12.2	11.9	5	12.3	11.9	1		12.3	0
r-D	mg/L	0.0520	0.0525	0.0584	0.0542	0.0506	5	0.0584	0.0535			0.0567	0
n-D I-NO23	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
	mg/L	<0.020	<0.020	<0.020	0.034	<0.020	5	0.034	0.0148			0.0244	0

Table 42 Spring Lakes 17 Page(s)

MS ID										Water Quali	ty Guidelines		
tnName		LLE Zone of Dilution 2											Count of resu
tnCode		LLEZ2											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
	mg/L	40	39	45	46	44	5	46	42.8	128		45.6	0
	NTU	0.45	0.50	0.28	0.65	0.25	5	0.65	0.43			0.59	0
lk-T	mg/L	23	23	25	25	24	5	25	24.0			25	0
I-T	mg/L	0.0379	0.0324	0.0313	0.0250	0.0238	5	0.0379	0.0301	*		0.0357	0
s-T	mg/L	0.00033	0.00028	0.00027	0.00029	0.00032	5	0.00033	0.00030	0.005		0.00033	0
-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
a-T	mg/L	0.0041	0.0039	0.0043	0.0042	0.0044	5	0.0044	0.0042	1		0.0044	0
T-E	mg/L	<0.00010	<0.000010	<0.00010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
a-T	mg/L	17.3	15.7	16.5	17.5	17.1	5	17.5	16.8			17.4	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
p-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	5	<0.00050	0.000250			0.00025	0
e-T	mg/L	0.060	0.051	0.048	0.046	0.044	5	0.060	0.050		1	0.056	0
ard-T	mg/L	52.5	47.1	50.7	53.5	52.3	5	53.5	51.2			53.1	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
lg-T	mg/L	2.24	1.91	2.29	2.34	2.34	5	2.34	2.22			2.34	0
ln-T	mg/L	0.0066	0.0066	0.0079	0.0073	0.0066	5	0.0079	0.0070	0.737	0.8706	0.0077	0
T	mg/L	0.0033	0.0042	<0.0030	0.0037	0.0043	5	0.0043	0.00340	0.015		0.00426	0
lo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
i-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
Т	mg/L	0.190	0.186	0.188	0.190	0.186	5	0.190	0.188	-		0.19	0
Τ	mg/L	13.0	10.9	13.4	13.4	13.3	5	13.4	12.8			13.4	0
:-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
a-T	mg/L	4.75	4.28	4.79	4.74	4.81	5	4.81	4.67			4.8	0
-T	mg/L	0.102	0.0952	0.112	0.105	0.103	5	0.112	0.1034			0.1092	0
n-T I-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
	mg/L	0.0297 0.00031	0.0276	0.0253 0.00032	0.0220 0.00030	0.0217 0.00034	5	0.0297 0.00034	0.0253 0.00032			0.0289 0.00033	
s-D a-D	mg/L		0.00032 0.0042	0.00032	0.00030			0.00034	0.00032				0
	mg/L	0.0041 <0.050	<0.050	<0.050	<0.050	0.0047 <0.050	5	<0.050	0.0250	-		0.0047 0.025	0
-D d-D	mg/L			<0.00010			5			0.000007	0.00017		
	mg/L	<0.000010 17.3	<0.000010 16.6	20.3	<0.000010	<0.000010		<0.000010	0.0000050 18.3	0.000087	0.00017	0.000005	0
a-D I-D	mg/L	<1.0	<1.0	<1.0	19.2 <1.0	18 <1.0	5	20.3 <1.0	0.50	150	600	19.9 0.5	0
r-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010		<0.0010	0.00050	150	600	0.0005	0
ט-D	mg/L mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
ม-D	mg/L	0.00070	0.00020	0.0004	0.00040	0.00020	5	0.00020	0.000100	*	*	0.0001	5
OC OC	mg/L	3.6	3.6	3.5	3.4	3.6	5	3.6	3.5			3.6	0
ard-D	mg/L	52.4	51.0	61.3	58.2	54.9	5	61.3	55.6	+		60.1	0
:-D	mg/L	0.232	0.0363	0.0409	0.0323	0.0312	5	0.232	0.0745	+	0.35	0.1556	0
ט-D	mg/L	<0.00020	<0.00020	<0.00020	<0.0020	<0.00020	5	<0.00020	0.00100	+	0.33	0.0001	0
g-D	mg/L	2.21	2.34	2.58	2.50	2.43	5	2.58	2.41	+		2.55	0
n-D	mg/L	0.0073	0.0060	0.006	0.0054	0.0043	5	0.0073	0.0058			0.0068	0
lo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0073	0.00050	1		0.0005	0
-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
;-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00010	5	<0.00020	0.0000100	1		0.000010	0
D D	mg/L	0.192	0.193	0.209	0.214	0.204	5	0.214	0.202	1		0.212	0
D	mg/L	13.4	13.3	14.9	15.0	14.5	5	15.0	14.2	1		15	0
-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	1		0.000050	0
a-D	mg/L	4.81	4.76	5.46	5.36	5.11	5	5.46	5.10	1		5.42	0
-D	mg/L	0.102	0.103	0.116	0.117	0.113	5	0.117	0.110	+		0.117	0
1-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	5	<0.020	0.0100	5.5075	5.555	0.01	0

Table 42 Spring Lakes 17 Page(s)

Turb N Alk-T n Al-T n As-T n B-T n Ba-T n Cd-T n Cr-T n Cu-T n Cu-T n	mg/L NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Lower Quinsam Lake 18 LQL1 10-Apr-24 15 0.46 30 0.0323 0.00061 <0.050 0.0031 <0.000010 9.74	17-Apr-24 15 0.86 30 0.0248 0.00052 <0.050	24-Apr-24 17 0.4 32 0.0268	1-May-24 15 0.37 31	8-May-24 15 0.26	Count 5	Max	5 in 30 Ave	Chronic	ty Guidelines Acute	90th Percentile	Count of results exceeding standard
SO4-D n Turb N Alk-T n Al-T n As-T n B-T n Ba-T n Cd-T n Cc-T n Cu-T n	NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10-Apr-24 15 0.46 30 0.0323 0.00061 <0.050 0.0031 <0.000010	15 0.86 30 0.0248 0.00052 <0.050	17 0.4 32 0.0268	15 0.37	15		Max	1	Chronic	Acute	90th Percentile	•
SO4-D n Turb N Alk-T n Al-T n As-T n B-T n Ba-T n Cd-T n Cc-T n Cu-T n	NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	10-Apr-24 15 0.46 30 0.0323 0.00061 <0.050 0.0031 <0.000010	15 0.86 30 0.0248 0.00052 <0.050	17 0.4 32 0.0268	15 0.37	15		Max	1	Chronic	Acute	90th Percentile	•
Turb N Alk-T n Al-T n As-T n Bs-T n Bs-T n Cd-T n Cr-T n Cu-T n Cu-T n	NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	15 0.46 30 0.0323 0.00061 <0.050 0.0031 <0.000010	15 0.86 30 0.0248 0.00052 <0.050	17 0.4 32 0.0268	15 0.37	15			1				Stanuaru
Turb N Alk-T n Al-T n As-T n Bs-T n Bs-T n Cd-T n Cr-T n Cu-T n Cu-T n	NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.46 30 0.0323 0.00061 <0.050 0.0031 <0.000010	0.86 30 0.0248 0.00052 <0.050	0.4 32 0.0268	0.37			17	15.4	128		16.2	0
Alk-T n Al-T n As-T n B-T n Ba-T n Cd-T n Ca-T n Cr-T n Cu-T n Cu-T n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	30 0.0323 0.00061 <0.050 0.0031 <0.000010	0.0248 0.00052 <0.050	32 0.0268		ı U.26	5	0.86	0.47			0.7	0
Al-T n As-T n B-T n Ba-T n Cd-T n Ca-T n Cr-T n Cu-T n Cu-T n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0323 0.00061 <0.050 0.0031 <0.000010	0.00052 <0.050	0.0268		31	5	32	30.8			31.6	0
As-T n B-T n Ba-T n Cd-T n Ca-T n Co-T n Co-T n Cu-T n	mg/L mg/L mg/L mg/L mg/L mg/L	0.00061 <0.050 0.0031 <0.000010	0.00052 <0.050		0.0213	0.0201	5	0.0323	0.0251	*		0.0301	0
B-T n Ba-T n Cd-T n Ca-T n Cr-T n Co-T n Cu-T n	mg/L mg/L mg/L mg/L mg/L	<0.050 0.0031 <0.000010	<0.050	0.00047	0.00056	0.00056	5	0.00061	0.00054	0.005		0.00059	0
Ba-T n Cd-T n Ca-T n Cr-T n Co-T n Cu-T n	mg/L mg/L mg/L mg/L	0.0031 <0.000010		<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
Cd-T n Ca-T n Cr-T n Co-T n Cu-T n	mg/L mg/L mg/L	<0.000010	0.0027	0.0025	0.0028	0.0028	5	0.0031	0.0028	1		0.003	0
Ca-T n Cr-T n Co-T n Cu-T n	mg/L mg/L		<0.00010	<0.000010	<0.000010	<0.00010	5	<0.000010	0.0000050			0.000005	0
Cr-T n Co-T n Cu-T n	mg/L	J./4	8.22	8.12	9.21	9.29	5	9.74	8.92			9.56	0
Co-T n	_	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Cu-T n		<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
	mg/L	0.00059	<0.00050	<0.00050	0.00054	0.00052	5	0.00059	0.000430			0.00057	0
Fe-T n	mg/L	0.074	0.061	0.057	0.067	0.053	5	0.074	0.062		1	0.071	0
	mg/L	29.4	24.8	24.5	27.7	27.8	5	29.4	26.8			28.8	0
	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
	mg/L	1.24	1.03	1.03	1.14	1.12	5	1.24	1.11			1.2	0
	mg/L	0.0047	0.0041	0.0038	0.0041	0.0037	5	0.0047	0.0041	0.737	0.8706	0.0045	0
	mg/L	0.0039	0.0037	0.0044	0.0033	0.0046	5	0.0046	0.0040	0.015		0.0045	0
	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
	mg/L	0.176	0.150	0.143	0.163	0.162	5	0.176	0.159			0.171	0
	mg/L	5.3	4.3	4.6	4.6	4.7	5	5.3	4.7			5.1	0
	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
	mg/L	7.05	5.87	6.28	6.72	6.88	5	7.05	6.56			6.98	0
	mg/L	0.0428	0.0370	0.037	0.0405	0.0394	5	0.0428	0.0393			0.0419	0
Zn-T n	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
Al-D n	mg/L	0.0299	0.0227	0.0194	0.0185	0.0174	5	0.0299	0.0216			0.027	0
	mg/L	0.00057	0.00057	0.00053	0.00060	0.00059	5	0.00060	0.00057			0.0006	0
Ba-D n	mg/L	0.0031	0.0031	0.0031	0.0030	0.003	5	0.0031	0.0031			0.0031	0
B-D n	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
Cd-D n	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	0.000005	0
Ca-D n	mg/L	9.94	9.94	9.94	10.3	10.2	5	10.3	10.06			10.26	0
CI-D n	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
Cr-D n	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Co-D n	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
Cu-D n	mg/L	0.00061	0.00056	0.00057	0.00051	0.00055	5	0.00061	0.00056	*	*	0.00059	5
DOC n	mg/L	3.3	3.1	3.1	3.0	3.1	5	3.3	3.1			3.2	0
Hard-D n	mg/L	30.0	29.8	29.9	30.7	30.8	5	30.8	30.2			30.8	0
Fe-D n	mg/L	0.0570	0.0434	0.0462	0.0356	0.036	5	0.0570	0.0436		0.35	0.0527	0
Pb-D n	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
Mg-D n	mg/L	1.25	1.22	1.23	1.23	1.3	5	1.3	1.25			1.28	0
Mn-D n	mg/L	0.0036	0.0027	0.0014	0.0012	0.0014	5	0.0036	0.0021			0.0032	0
	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
Ag-D n	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100			0.000010	0
	mg/L	0.179	0.182	0.183	0.186	0.183	5	0.186	0.183			0.185	0
	mg/L	5.6	5.1	5.3	5.4	5.1	5	5.6	5.3			5.5	0
	mg/L	<0.00010	<0.00010	0.0001	<0.00010	<0.00010	5	0.0001	0.000060			0.000080	0
	mg/L	7.29	7.14	7.73	7.69	7.7	5	7.73	7.51			7.72	0
	mg/L	0.0443	0.0451	0.0478	0.0480	0.0441	5	0.0480	0.0459			0.0479	0
	mg/L	0.0082	<0.0050	<0.0050	<0.0050	<0.0050	5	0.0082	0.00364	0.0075	0.033	0.00592	1
	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	5	<0.020	0.0100			0.01	0
	ug/L					1	1	1	1.0			1	0

Notes: *Calculated guideline. Refer to Exceedance Tables. Factor applied to less-than results when calculating statistics: 0.5

Table 42 Spring Lakes 17 Page(s)

EMS ID		E292118								Water Quali	ty Guidelines		
tnName		Lower Quinsam Lake 4M											Count of resul
nCode		LQL4											exceeding
		10-Apr-24	17-Apr-24	24-Apr-24	1-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	15	16	16	15	15	5	16	15.4	128		16	0
urb	NTU	0.43	0.69	0.38	0.50	0.3	5	0.69	0.46			0.61	0
lk-T	mg/L	30	31	43	31	33	5	43	33.6			39	0
l-T	mg/L	0.0311	0.0270	0.0229	0.0230	0.0213	5	0.0311	0.0251	*		0.0295	0
s-T	mg/L	0.00059	0.00056	0.00057	0.00056	0.00063	5	0.00063	0.00058	0.005		0.00061	0
-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
a-T	mg/L	0.0029	0.0028	0.0029	0.0028	0.0028	5	0.0029	0.0028	1		0.0029	0
d-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
a-T	mg/L	9.28	8.70	9.33	8.90	9.36	5	9.36	9.11			9.35	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	0.00058	0.00052	0.00055	0.00053	0.00057	5	0.00058	0.00055			0.00058	0
e-T	mg/L	0.074	0.069	0.062	0.060	0.063	5	0.074	0.066		1	0.072	0
ard-T	mg/L	28.0	26.3	28.2	26.9	28.3	5	28.3	27.5			28.3	0
o-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
g-T	mg/L	1.17	1.10	1.19	1.14	1.2	5	1.2	1.16			1.2	0
ln-T	mg/L	0.0045	0.0048	0.0045	0.0042	0.0042	5	0.0048	0.0044	0.737	0.8706	0.0047	0
Т	mg/L	0.0041	<0.0030	0.0041	0.0043	0.0042	5	0.0043	0.00364	0.015		0.00426	0
lo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
i-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
Т	mg/L	0.167	0.159	0.171	0.163	0.169	5	0.171	0.166			0.17	0
Т	mg/L	5.0	4.7	5	4.5	4.6	5	5	4.8			5	0
:-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
а-Т	mg/L	6.57	6.41	7.5	6.66	7.23	5	7.5	6.87			7.39	0
-Т	mg/L	0.0403	0.0393	0.0435	0.0393	0.0394	5	0.0435	0.0404			0.0422	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
l-D	mg/L	0.0256	0.0214	0.0179	0.0197	0.0176	5	0.0256	0.0204			0.0239	0
s-D	mg/L	0.00057	0.00056	0.00053	0.00061	0.00062	5	0.00062	0.00058			0.00062	0
a-D	mg/L	0.0031	0.0031	0.003	0.0030	0.0031	5	0.0031	0.0031			0.0031	0
-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
d-D	mg/L	<0.000010	<0.000010	0.000011	<0.000010	<0.000010	5	0.000011	0.0000062	0.000087	0.00017	0.000009	0
a-D	mg/L	9.78	10.2	10.2	10.2	10.2	5	10.2	10.12			10.2	0
I-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
r-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
u-D	mg/L	0.00054	0.00057	0.00052	0.00051	0.00056	5	0.00057	0.00054	*	*	0.00057	5
ос	mg/L	3.3	3.2	2.8	3.1	2.7	5	3.3	3.0			3.3	0
ard-D	mg/L	29.5	30.5	30.7	30.6	30.8	5	30.8	30.4			30.8	0
e-D	mg/L	0.0497	0.0458	0.037	0.0365	0.0398	5	0.0497	0.0418		0.35	0.0481	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
lg-D	mg/L	1.23	1.24	1.24	1.23	1.29	5	1.29	1.25			1.27	0
n-D	mg/L	0.0033	0.0031	0.0014	0.0013	0.0014	5	0.0033	0.0021			0.0032	0
lo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
g-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100			0.000010	0
D	mg/L	0.174	0.179	0.185	0.199	0.183	5	0.199	0.184			0.193	0
D	mg/L	5.3	5.3	5.6	4.4	4.9	5	5.6	5.1			5.5	0
e-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			0.000050	0
a-D	mg/L	7.24	7.16	7.98	7.90	7.74	5	7.98	7.60			7.95	0
-D	mg/L	0.0428	0.0447	0.0477	0.0452	0.0442	5	0.0477	0.0449			0.0467	0
1-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
-NO23	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	5	<0.020	0.0100			0.01	0

Table 42 Spring Lakes 17 Page(s)

EMS ID		E292118								Water Quali	ty Guidelines		
tnName		Lower Quinsam Lake 9M											Count of resul
tnCode		LQL9											exceeding
		10-Apr-24	17-Apr-24	25-Apr-24	2-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	14	16	15	15	15	5	16	15.0	128		15.6	0
urb	NTU	0.59	0.44	0.3	0.50	0.25	5	0.59	0.42			0.55	0
lk-T	mg/L	30	31	31	31	32	5	32	31.0			31.6	0
I-T	mg/L	0.0322	0.0272	0.0242	0.0236	0.0211	5	0.0322	0.0257	*		0.0302	0
\s-T	mg/L	0.00055	0.00058	0.0005	0.00055	0.00055	5	0.00058	0.00055	0.005		0.00057	0
3-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
а-Т	mg/L	0.0029	0.0029	0.0028	0.0028	0.0027	5	0.0029	0.0028	1		0.0029	0
d-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
a-T	mg/L	8.88	8.82	8.59	9.04	8.89	5	9.04	8.84			8.98	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	0.00054	0.00054	0.00052	0.00054	0.0005	5	0.00054	0.00053			0.00054	0
e-T	mg/L	0.072	0.071	0.065	0.062	0.058	5	0.072	0.066		1	0.072	0
ard-T	mg/L	26.9	26.8	26	27.3	26.8	5	27.3	26.8			27.1	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
1g-T	mg/L	1.15	1.15	1.09	1.14	1.12	5	1.15	1.13			1.15	0
1n-T	mg/L	0.0045	0.0052	0.005	0.0043	0.004	5	0.0052	0.0046	0.737	0.8706	0.0051	0
-T	mg/L	0.0039	0.0033	0.0035	0.0030	0.0031	5	0.0039	0.0034	0.015		0.0037	0
lo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
i-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
-T	mg/L	0.161	0.164	0.152	0.160	0.157	5	0.164	0.159			0.163	0
Т	mg/L	4.7	4.8	4.5	4.5	4.5	5	4.8	4.6			4.8	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
а-Т	mg/L	6.16	6.66	6.44	6.63	6.6	5	6.66	6.50			6.65	0
r-T	mg/L	0.0390	0.0410	0.039	0.0391	0.0379	5	0.0410	0.0392			0.0402	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
l-D	mg/L	0.0263	0.0211	0.0207	0.0193	0.0184	5	0.0263	0.0212			0.0242	0
s-D	mg/L	0.00055	0.00057	0.00054	0.00059	0.0006	5	0.0006	0.00057			0.0006	0
a-D	mg/L	0.0030	0.0031	0.0031	0.0030	0.003	5	0.0031	0.0030			0.0031	0
-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
d-D	mg/L	<0.000010	<0.00010	0.000018	<0.000010	<0.000010	5	0.000018	0.0000076	0.000087	0.00017	0.000013	0
a-D	mg/L	9.52	9.81	9.95	10.1	10.4	5	10.4	9.96			10.28	0
I-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
r-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
u-D	mg/L	0.00054	0.00055	0.00063	0.00054	0.00054	5	0.00063	0.00056	*	*	0.0006	5
oc	mg/L	3.3	3.2	2.8	3.1	3	5	3.3	3.1			3.3	0
ard-D	mg/L	28.8	29.5	29.9	30.4	31.2	5	31.2	30.0			30.9	0
e-D	mg/L	0.0508	0.0459	0.0412	0.0376	0.0382	5	0.0508	0.0427		0.35	0.0488	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0
1g-D	mg/L	1.23	1.20	1.22	1.24	1.3	5	1.3	1.24	1		1.28	0
1n-D	mg/L	0.0031	0.0031	0.0019	<0.0010	<0.0010	5	0.0031	0.00182			0.0031	0
1o-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
i-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
g-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	+		0.000010	0
-D	mg/L	0.170	0.177	0.186	0.188	0.18	5	0.188	0.180	+		0.187	0
·D	mg/L	5.0	5.4	5.5	4.0	5.4	5	5.5	5.1	+		5.5	0
e-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	+		0.000050	0
a-D	mg/L	6.73	7.20	7.52	7.88	7.64	5	7.88	7.39	4		7.78	0
r-D	mg/L	0.0413	0.0444	0.0475	0.0477	0.0442	5	0.0477	0.0450			0.0476	0
n-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
-NO23	mg/L	<0.020	<0.020	<0.020	<0.020	0.021	5	0.021	0.0122	1		0.0166	0

Table 42 Spring Lakes 17 Page(s)

EMS ID		E292118								Water Quali	ty Guidelines		
tnName		Lower Quinsam Lake 1M	В										Count of resul
nCode		LQLB											exceeding
		10-Apr-24	17-Apr-24	25-Apr-24	2-May-24	8-May-24	Count	Max	5 in 30 Ave	Chronic	Acute	90th Percentile	standard
04-D	mg/L	15	16	15	15	15	5	16	15.2	128		15.6	0
urb	NTU	0.66	0.52	0.39	0.65	0.48	5	0.66	0.54			0.66	0
lk-T	mg/L	29	31	31	31	31	5	31	30.6			31	0
l-T	mg/L	0.0329	0.0314	0.0282	0.0255	0.024	5	0.0329	0.0284	*		0.0323	0
s-T	mg/L	0.00059	0.00066	0.00061	0.00063	0.0007	5	0.0007	0.00064	0.005		0.00068	0
-Т	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0
a-T	mg/L	0.0029	0.0031	0.0031	0.0032	0.0036	5	0.0036	0.0032	1		0.0034	0
d-T	mg/L	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			0.000005	0
a-T	mg/L	8.69	9.02	9.06	9.29	9.32	5	9.32	9.08			9.31	0
r-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0
u-T	mg/L	0.00056	0.00055	0.00057	0.00070	0.00096	5	0.00096	0.00067			0.00086	0
e-T	mg/L	0.084	0.112	0.116	0.145	0.14	5	0.145	0.119		1	0.143	0
ard-T	mg/L	26.4	27.3	27.5	28.1	28.1	5	28.1	27.5			28.1	0
b-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0
lg-T	mg/L	1.13	1.15	1.17	1.19	1.18	5	1.19	1.16			1.19	0
ln-T	mg/L	0.0060	0.0114	0.0146	0.0150	0.0229	5	0.0229	0.0140	0.737	0.8706	0.0197	0
-T	mg/L	0.0039	0.0039	0.0041	0.0034	0.0041	5	0.0041	0.0039	0.015		0.0041	0
lo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0
i-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0
·T	mg/L	0.157	0.164	0.162	0.170	0.166	5	0.170	0.164			0.168	0
Т	mg/L	4.4	4.7	4.8	4.8	4.7	5	4.8	4.7			4.8	0
e-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		0.000050	0
g-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	0.000010	0
a-T	mg/L	5.91	6.47	6.73	6.84	6.73	5	6.84	6.54			6.8	0
r-T	mg/L	0.0378	0.0408	0.0415	0.0408	0.04	5	0.0415	0.0402			0.0412	0
n-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
I-D	mg/L	0.0265	0.0215	0.0204	0.0188	0.017	5	0.0265	0.0208			0.0245	0
s-D	mg/L	0.00059	0.00062	0.00059	0.00068	0.00066	5	0.00068	0.00063			0.00067	0
a-D	mg/L	0.0031	0.0032	0.0033	0.0037	0.0035	5	0.0037	0.0034			0.0036	0
-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0
d-D	mg/L	<0.00010	<0.000010	0.000013	<0.000010	<0.000010	5	0.000013	0.0000066	0.000087	0.00017	0.000010	0
a-D	mg/L	9.42	9.72	10.3	10.5	10.2	5	10.5	10.03			10.42	0
l-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0
r-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0
o-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	<u> </u>		0.0001	0
u-D	mg/L	0.00055	0.00054	0.00057	0.00058	0.00054	5	0.00058	0.00056	*	*	0.00058	5
oc	mg/L	3.2	3.0	3.2	3.1	2.9	5	3.2	3.1	+		3.2	0
ard-D	mg/L	28.4	29.2	30.7	31.7	31	5	31.7	30.2	+		31.4	0
e-D	mg/L	0.0571	0.0683	0.0681	0.0716	0.0812	5	0.0812	0.0693	+	0.35	0.0774	0
b-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	+		0.0001	0
lg-D	mg/L	1.19	1.19	1.21	1.30	1.32	5	1.32	1.24	+		1.31	0
ln-D	mg/L	0.0047	0.0093	0.0106	0.0102	0.0171	5	0.0171	0.0104	1		0.0145	0
lo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
i-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	+		0.0005	0
g-D	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	+		0.000010	0
D	mg/L	0.171	0.175	0.185	0.198	0.187	5	0.198	0.183	+		0.194	0
<u>D</u>	mg/L	4.9	4.9	5.2	3.8	5.1	5	5.2	4.8	+		5.2	0
e-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	+		0.000050	0
a-D	mg/L	6.57	6.85	7.3	8.08	7.49	5	8.08	7.26	+		7.84	0
r-D	mg/L	0.0411	0.0439	0.0483	0.0485	0.0442	5	0.0485	0.0452	0.0075	0.022	0.0484	0
1-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0
-NO23	mg/L	<0.020	<0.020	<0.020	<0.020	0.034	5	0.034	0.0148	1	l l	0.0244	0

Table 43 Spring Rivers 7 Page(s)

EMS ID StnName		E217017 No Name Lake Outlet								Water Qualit	y Guidelines			
StnCode Date	Unit	NNO 28-Mar-24	3-Apr-24	8-Apr-24	15-Apr-24	22-Apr-24	Count	Max	5 in 30 Av	Chronic	Acute	90th Percentile	Count of results exceeding standard	Percent of results exceeding standard
pH-F	pH Units		7.03	7.23	7.25	7.25	5	7.25	7.13	Cilionic	Acute	7.25	0	0.0
Cond-F	uS/cm	28.1	29	29.8	32	29.4	5	32	29.7			31.1	0	0.0
SO4-D	mg/L	<1.0	<1.0	<1.0	<1.0	1.3	5	1.3	0.66	128		0.98	0	0.0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0	0.0
TSS	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50			0.5	0	0.0
Alk-T	mg/L	10	11	11	11	11	5	11	10.8			11	0	0.0
Al-T	mg/L	0.0445	0.0424	0.0416	0.0374	0.034	5	0.0445	0.0400	*		0.0437	0	0.0
As-T	mg/L	0.00021	0.00021	0.00025	0.00022	0.0002	5	0.00025	0.00022	0.005		0.00024	0	0.0
Ba-T	mg/L	0.0012	<0.0010	<0.0010	<0.0010	<0.0010	5	0.0012	0.00064	1		0.00092	0	0.0
B-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0	0.0
Bicarb	mg/L	12	13	13	13	14	5	14	13.0			13.6	0	0.0
Cd-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			5.00E-06	0	0.0
Ca-T	mg/L	3.02	3.03	3.25	3.04	3.28	5	3.28	3.12			3.27	0	0.0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-T	mg/L	<0.00020	<0.0020	<0.0020	<0.0020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0	0.0
Cu-T	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	5	<0.00050	0.000250			0.00025	0	0.0
Hard-T	mg/L	10.2	10.4	11.1	10.4	10.9	5	11.1	10.6			11	0	0.0
Fe-T	mg/L	0.052	0.046	0.045	0.040	0.043	5	0.052	0.045		1	0.05	0	0.0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0	0.0
Mg-T	mg/L	0.650	0.683	0.731	0.677	0.657	5	0.731	0.680			0.712	0	0.0
Mn-T	mg/L	0.0028	0.0030	0.0030	0.0031	0.0036	5	0.0036	0.0031	0.737	0.8706	0.0034	0	0.0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0	0.0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025	- 10	0.0005	0	0.0
K-T	mg/L	<0.050	<0.050	<0.050	0.053	<0.050	5	0.053	0.0306	0.023		0.0418	0	0.0
S-T	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0	0.0
Se-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		5.00E-05	0	0.0
Ag-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	1.00E-05	0	0.0
Na-T	mg/L	0.884	0.911	0.952	0.920	0.886	5	0.952	0.911			0.939	0	0.0
Sr-T	mg/L	0.0084	0.0090	0.0089	0.0090	0.0101	5	0.0101	0.0091			0.0097	0	0.0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Al-D	mg/L	0.0397	0.0394	0.0387	0.0369	0.0364	5	0.0397	0.0382			0.0396	0	0.0
As-D	mg/L	0.00023	0.00021	0.00023	0.00022	0.00024	5	0.00024	0.00023			0.00024	0	0.0
Ba-D	mg/L	0.0013	0.0010	0.0010	0.0011	0.0012	5	0.0013	0.0011			0.0013	0	0.0
B-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0	0.0
Cd-D	mg/L	<0.000010	<0.000010	<0.00010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	5.00E-06	0	0.0
Ca-D	mg/L	3.37	3.31	3.41	3.31	3.6	5	3.6	3.40			3.52	0	0.0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0	0.0
Cu-D	mg/L	0.00045	0.00046	0.00047	0.00049	0.00049	5	0.00049	0.00047	*	*	0.00049	5	100.0
Hard-D	mg/L	11.5	11.2	11.7	11.3	12.4	5	12.4	11.6			12.1	0	0.0
DOC	mg/L	3.5	3.7	3.7	3.7	3.5	5	3.7	3.6			3.7	0	0.0
Fe-D	mg/L	0.0334	0.0322	0.0329	0.0356	0.0386	5	0.0386	0.0345		0.35	0.0374	0	0.0
Pb-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0	0.0
Mg-D	mg/L	0.754	0.711	0.763	0.747	0.839	5	0.839	0.763			0.809	0	0.0
Mn-D	mg/L	0.0026	0.0027	0.0027	0.0031	0.0036	5	0.0036	0.0029			0.0034	0	0.0
Mo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
K-D	mg/L	0.057	0.056	0.054	0.051	0.056	5	0.057	0.055			0.057	0	0.0
S-D	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0	0.0
Se-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			5.00E-05	0	0.0
Na-D	mg/L	0.981	1.01	1.01	1.02	1.08	5	1.08	1.020			1.056	0	0.0
Sr-D	mg/L	0.0092	0.0099	0.0100	0.0101	0.0107	5	0.0107	0.0100			0.0105	0	0.0
Zn-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Notes: *Calculat	ed guideline.	See Exceedance Table.						•		•			-	_
Factor applied to	lore than roce	ults when calculating statistics	: 0.5											

EMS ID		E219412								Water Qualit	y Guidelines			
StnName		Long Lake Outlet												
StnCode		LLO												
													Count of results	Percent of results
Date	Unit	28-Mar-24	3-Apr-24	8-Apr-24	15-Apr-24	22-Apr-24	Count	Max	5 in 30 Av	Chronic	Acute	90th Percentile	exceeding standard	exceeding standard
pH-F	pH Units	7.14	7.08	7.46	7.37	7.45	5	7.46	7.30	I	Acute	7.46	0	0.0
Cond-F	uS/cm	137.3	117.2	140.1	122.8	141.5	5	141.5	131.8			140.9	0	0.0
SO4-D	mg/L	37	36	43	38	42	5	43	39.2	128		42.6	0	0.0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0	0.0
TSS	mg/L	<1.0	<1.0	<1.0	<1.0	1.6	5	1.6	0.72	150	000	1.16	0	0.0
Alk-T	mg/L	22	22	23	23	24	5	24	22.8			23.6	0	0.0
Al-T	mg/L	0.0393	0.0419	0.0333	0.0320	0.025	5	0.0419	0.0343	*		0.0409	0	0.0
As-T	mg/L	0.00031	0.00033	0.00036	0.00032	0.00031	5	0.00036	0.00033	0.005		0.00035	0	0.0
Ba-T	mg/L	0.0039	0.0035	0.0040	0.0035	0.0039	5	0.0040	0.0038	1		0.004	0	0.0
B-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0	0.0
Bicarb	mg/L	27	27	28	28	29	5	29	27.8			28.6	0	0.0
Cd-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			5.00E-06	0	0.0
Ca-T	mg/L	15.6	13.9	17.3	13.7	16.2	5	17.3	15.3			16.9	0	0.0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0	0.0
Cu-T	mg/L	<0.00050	0.00051	0.00103	<0.00050	<0.00050	5	0.00103	0.000458			0.000822	0	0.0
Hard-T	mg/L	47.5	42.6	52.8	42.3	48.3	5	52.8	46.7			51	0	0.0
Fe-T	mg/L	0.065	0.069	0.059	0.054	0.05	5	0.069	0.059		1	0.067	0	0.0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0	0.0
Mg-T	mg/L	2.05	1.88	2.31	1.98	1.94	5	2.31	2.03			2.21	0	0.0
Mn-T	mg/L	0.0072	0.0093	0.0058	0.0057	0.0068	5	0.0093	0.0070	0.737	0.8706	0.0085	0	0.0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0	0.0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0	0.0
K-T	mg/L	0.178 12.4	0.166 10.8	0.190 13.4	0.172 11.4	0.169 11.4	5	0.190 13.4	0.175 11.9			0.185 13	0	0.0
Se-T	mg/L mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		5.00E-05	0	0.0
Ag-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000030	0.0002	0.0001	1.00E-05	0	0.0
Na-T	mg/L	4.45	3.93	4.74	3.99	4.36	5	4.74	4.29	0.00003	0.0001	4.62	0	0.0
Sr-T	mg/L	0.0958	0.0844	0.100	0.0879	0.098	5	0.100	0.0932			0.0992	0	0.0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Al-D	mg/L	0.0306	0.0321	0.0297	0.0282	0.0246	5	0.0321	0.0290	0.0073	0.055	0.0315	0	0.0
As-D	mg/L	0.00030	0.00029	0.00032	0.00033	0.00032	5	0.00033	0.00031			0.00033	0	0.0
Ba-D	mg/L	0.0040	0.0037	0.0045	0.0041	0.0045	5	0.0045	0.0042			0.0045	0	0.0
B-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0	0.0
Cd-D	mg/L	<0.000010	<0.000010	<0.000010	<0.00010	<0.00010	5	<0.000010	0.0000050	0.000087	0.00017	5.00E-06	0	0.0
Ca-D	mg/L	16.5	14.9	18.0	15.4	17.9	5	18.0	16.5			18	0	0.0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0	0.0
Cu-D	mg/L	0.00039	0.00042	0.00043	0.00042	0.00044	5	0.00044	0.00042	*	*	0.00044	5	100.0
Hard-D	mg/L	50.5	45.6	54.8	47.6	55.1	5	55.1	50.7			55	0	0.0
DOC	mg/L	3.5	3.5	4.0	3.5	3.3	5	4.0	3.6			3.8	0	0.0
Fe-D	mg/L	0.0436	0.0397	0.0457	0.0378	0.0355	5	0.0457	0.0405		0.35	0.0449	0	0.0
Pb-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0	0.0
Mg-D	mg/L	2.23	2.04	2.41	2.21	2.5	5	2.5	2.28			2.46	0	0.0
Mn-D	mg/L	0.0047	0.0046	0.0049	0.0043	0.0037	5	0.0049	0.0044			0.0048	0	0.0
Mo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
K-D	mg/L	0.188	0.179	0.206	0.192	0.206	5	0.206	0.194			0.206	0	0.0
S-D	mg/L	12.6	11.8	14.8	13.0	14.8	5	14.8	13.4			14.8	0	0.0
Se-D	mg/L	<0.00010 4.51	<0.00010 4.24	<0.00010 4.99	<0.00010 4.57	<0.00010 5.22	5	<0.00010 5.22	0.000050 4.71			5.00E-05 5.13	0	0.0
Na-D Sr-D	mg/L	4.51 0.0961	4.24 0.0945	4.99 0.111	4.57 0.102	0.113	5	0.113				0.1122	0	0.0
Sr-D Zn-D	mg/L mg/L	<0.0961	<0.0945	0.111 <0.0050	0.102 <0.0050	<0.0050	5	<0.0050	0.1033 0.00250	0.0075	0.033	0.1122	0	0.0
		e Exceedance Table.	<u.uu3u< td=""><td><u.uu3u< td=""><td><u.uu3u< td=""><td><u.uu3u< td=""><td>1 3</td><td><0.0050</td><td>0.00230</td><td>0.0075</td><td>0.053</td><td>0.0025</td><td>U</td><td>0.0</td></u.uu3u<></td></u.uu3u<></td></u.uu3u<></td></u.uu3u<>	<u.uu3u< td=""><td><u.uu3u< td=""><td><u.uu3u< td=""><td>1 3</td><td><0.0050</td><td>0.00230</td><td>0.0075</td><td>0.053</td><td>0.0025</td><td>U</td><td>0.0</td></u.uu3u<></td></u.uu3u<></td></u.uu3u<>	<u.uu3u< td=""><td><u.uu3u< td=""><td>1 3</td><td><0.0050</td><td>0.00230</td><td>0.0075</td><td>0.053</td><td>0.0025</td><td>U</td><td>0.0</td></u.uu3u<></td></u.uu3u<>	<u.uu3u< td=""><td>1 3</td><td><0.0050</td><td>0.00230</td><td>0.0075</td><td>0.053</td><td>0.0025</td><td>U</td><td>0.0</td></u.uu3u<>	1 3	<0.0050	0.00230	0.0075	0.053	0.0025	U	0.0
	-	s when calculating statistic	O. F											

EMS ID		E0126402								Water Qualit	v Guidelines			
StnName		Quinsam River at Argo	onaut Road								,			
StnCode		WA												
													Count of results	Percent of results
Date	Unit	28-Mar-24	3-Apr-24	8-Apr-24	15-Apr-24	22-Apr-24	Count	Max	5 in 30 Av	Chronic	Acute	90th Percentile	exceeding standard	exceeding standard
pH-F	pH Units	7.61	7.48	7.6	7.72	7.55	5	7.72	7.59			7.68	0	0.0
Cond-F	uS/cm	43.9	43.6	44.4	48.2	45	5	48.2	45.0			46.9	0	0.0
SO4-D	mg/L	<1.0	<1.0	<1.0	<1.0	1	5	1	0.60	128		0.8	0	0.0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0	0.0
TSS	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50			0.5	0	0.0
Alk-T	mg/L	18	18	20	20	21	5	21	19.4			20.6	0	0.0
Al-T	mg/L	0.0227	0.0322	0.0200	0.0179	0.0183	5	0.0322	0.0222	*		0.0284	0	0.0
As-T	mg/L	<0.00010	0.00010	0.00013	<0.00010	<0.00010	5	0.00013	0.000076	0.005		0.000118	0	0.0
Ва-Т	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	1		0.0005	0	0.0
В-Т	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0	0.0
Bicarb	mg/L	22	22	25	25	25	5	25	23.8			25	0	0.0
Cd-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050			5.00E-06	0	0.0
Ca-T	mg/L	6.23	5.82	6.02	5.73	6.17	5	6.23	5.99			6.21	0	0.0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0	0.0
Cu-T	mg/L	0.00058	0.00066	0.00059	0.00063	0.00056	5	0.00066	0.00060			0.00065	0	0.0
Hard-T	mg/L	18.2	17.2	17.8	16.9	18.2	5	18.2	17.7			18.2	0	0.0
Fe-T	mg/L	0.011	0.022	0.010	<0.010	<0.010	5	0.022	0.0106		1	0.0176	0	0.0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0	0.0
Mg-T	mg/L	0.649	0.635	0.668	0.622	0.678	5	0.678	0.650		0.02.0	0.674	0	0.0
Mn-T	mg/L	<0.0010	0.0012	<0.0010	<0.0010	<0.0010	5	0.0012	0.00064	0.737	0.8706	0.00092	0	0.0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0	0.0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0	0.0
K-T	mg/L	0.053	0.054	0.052	0.053	0.052	5	0.054	0.053			0.054	0	0.0
S-T	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0	0.0
Se-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		5.00E-05	0	0.0
Ag-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.0000100	0.00005	0.0001	1.00E-05	0	0.0
Na-T	mg/L	0.596	0.595	0.577	0.544	0.606	5	0.606	0.584	0.00003	0.0001	0.602	0	0.0
Sr-T	mg/L	0.0096	0.0096	0.0090	0.0092	0.0097	5	0.0097	0.0094			0.002	0	0.0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Al-D	mg/L	0.0198	0.0201	0.0193	0.0178	0.018	5	0.0201	0.0190	0.0073	0.033	0.025	0	0.0
As-D	mg/L	<0.00010	<0.00010	<0.0010	<0.0010	<0.0010	5	<0.00010	0.000050			5.00E-05	0	0.0
Ba-D	mg/L	0.0012	<0.0010	<0.0010	<0.0010	<0.0010	5	0.0012	0.00064			0.00092	0	0.0
B-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.005	0	0.0
Cd-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.0000050	0.000087	0.00017	5.00E-06	0	0.0
Ca-D	mg/L	6.61	6.31	6.40	6.22	6.97	5	6.97	6.50	0.000087	0.00017	6.83	0	0.0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.000100			0.0003	0	0.0
Cu-D	mg/L	0.00063	0.00020	0.00063	0.00064	0.00020	5	0.00064	0.000100	*	*	0.0001	5	100.0
Hard-D	mg/L	19.6	18.6	19.0	18.4	20.4	5	20.4	19.2		-	20.1	0	0.0
DOC	mg/L mg/L	2.5	2.3	2.6	2.3	20.4	5	20.4	2.4			2.6	0	0.0
Fe-D		0.0074	0.0087	0.0076	0.0065	0.0064	5	0.0087	0.0073		0.35	0.0083	0	0.0
Pb-D	mg/L mg/L	<0.0074	<0.0087	<0.00020	<0.00020	<0.00020	5	<0.00020	0.0073		0.55	0.0083	0	0.0
		0.745	0.686	0.722	0.706	0.735	5	0.745	0.000100			0.741	0	0.0
Mg-D Mn-D	mg/L	<0.010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.719			0.741	0	0.0
	mg/L		<0.0010	<0.0010 <0.0010			5					0.0005	0	0.0
Mo-D Ni-D	mg/L	<0.0010 <0.0010	<0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	5	<0.0010 <0.0010	0.00050 0.00050	-		0.0005	0	0.0
	mg/L												0	
K-D	mg/L	0.062	0.063	0.058	0.056	0.057	5	0.063	0.059			0.063		0.0
S-D	mg/L	<3.0	<3.0	<3.0	<3.0	<3.0	5	<3.0	1.50			1.5	0	0.0
Se-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	-		5.00E-05	0	0.0
Na-D	mg/L	0.629	0.683	0.650	0.623	0.655	5	0.683	0.648			0.672	0	0.0
Sr-D	mg/L	0.0104	0.0107	0.0107	0.0106	0.0107	5	0.0107	0.0106	0.0075	0.000	0.0107	0	0.0
Zn-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Notes: *Calcula	ted guideline. S	ee Exceedance Table. Its when calculating statisti												

EMS ID		E0900504								Water Qualit	y Guidelines			
StnName		Middle Quinsam Lake	Outlet							-	•			
StnCode		WB												
													Count of results	Percent of results
Date	Unit	28-Mar-24	3-Apr-24	8-Apr-24	15-Apr-24	22-Apr-24	Count	Max	5 in 30 Av	Chronic	Acute	90th Percentile	exceeding standard	exceeding standard
pH-F	pH Units	7.43	7.36	7.6	7.46	7.62	5	7.62	7.49			7.61	0	0.0
Cond-F	uS/cm	136.5	126	131	120.7	108.8	5	136.5	124.6			134.3	0	0.0
SO4-D	mg/L	24	27	27	24	19	5	27	24.2	128		27	0	0.0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0	0.0
TSS	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50			0.5	0	0.0
Alk-T	mg/L	36	35	36	36	33	5	36	35.2			36	0	0.0
Al-T	mg/L	0.0193	0.0204	0.0194	0.0162	0.0138	5	0.0204	0.0178	*		0.02	0	0.0
As-T	mg/L	0.00012	0.00014	0.00019	0.00011	0.00011	5	0.00019	0.00013	0.005		0.00017	0	0.0
Ва-Т	mg/L	0.0022	0.0019	0.0019	0.0015	0.0013	5	0.0022	0.0018	1		0.0021	0	0.0
B-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0	0.0
Bicarb	mg/L	44	43	44	44	40	5	44	43.0			44	0	0.0
Cd-T	mg/L	<0.000010	<0.00010	<0.00010	<0.00010	<0.000010	5	<0.000010	0.0000050			5.00E-06	0	0.0
Ca-T	mg/L	10.6	10.9	11.8	9.43	8.95	5	11.8	10.34			11.44	0	0.0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0	0.0
Cu-T	mg/L	0.00052	0.00057	0.00054	<0.00050	<0.00050	5	0.00057	0.000426			0.000558	0	0.0
Hard-T	mg/L	31.8	32.9	35.6	28.7	26.5	5	35.6	31.1			34.5	0	0.0
Fe-T	mg/L	0.025	0.029	0.029	0.024	0.022	5	0.029	0.026		1	0.029	0	0.0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0	0.0
Mg-T	mg/L	1.32	1.38	1.51	1.24	1.01	5	1.51	1.29			1.46	0	0.0
Mn-T	mg/L	0.0031	0.0035	0.0038	0.0034	0.0036	5	0.0038	0.0035	0.737	0.8706	0.0037	0	0.0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0	0.0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0	0.0
к-т	mg/L	0.184	0.190	0.194	0.183	0.153	5	0.194	0.181			0.192	0	0.0
S-T	mg/L	8.0	8.1	8.5	7.5	5.9	5	8.5	7.6			8.3	0	0.0
Se-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		5.00E-05	0	0.0
Ag-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	1.00E-05	0	0.0
Na-T	mg/L	10.9	10.4	11.0	10.2	7.94	5	11.0	10.09			10.96	0	0.0
Sr-T	mg/L	0.0521	0.0545	0.0600	0.0464	0.0438	5	0.0600	0.0514			0.0578	0	0.0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Al-D	mg/L	0.0178	0.0176	0.0166	0.0156	0.015	5	0.0178	0.0165			0.0177	0	0.0
As-D	mg/L	0.00013	0.00014	0.00015	0.00013	0.00012	5	0.00015	0.00013			0.00015	0	0.0
Ba-D	mg/L	0.0023	0.0021	0.0021	0.0018	0.0016	5	0.0023	0.0020			0.0022	0	0.0
B-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0	0.0
Cd-D	mg/L	<0.00010	<0.000010	<0.00010	<0.00010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	5.00E-06	0	0.0
Ca-D	mg/L	11.8	11.9	12.2	10.8	10.4	5	12.2	11.4			12.1	0	0.0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0	0.0
Cu-D	mg/L	0.00052	0.00052	0.00051	0.00054	0.00057	5	0.00057	0.00053	*	*	0.00056	5	100.0
Hard-D	mg/L	35.7	36.0	37.0	32.8	31.3	5	37.0	34.6			36.6	0	0.0
DOC	mg/L	2.7	2.4	2.5	2.3	2.5	5	2.7	2.5			2.6	0	0.0
Fe-D	mg/L	0.0207	0.0212	0.0212	0.0183	0.0197	5	0.0212	0.0202		0.35	0.0212	0	0.0
Pb-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0	0.0
Mg-D	mg/L	1.51	1.55	1.60	1.42	1.33	5	1.60	1.48			1.58	0	0.0
Mn-D	mg/L	0.0026	0.0028	0.0026	0.0026	0.0024	5	0.0028	0.0026			0.0027	0	0.0
Mo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
K-D	mg/L	0.206	0.210	0.212	0.201	0.176	5	0.212	0.201			0.211	0	0.0
S-D	mg/L	8.6	9.0	9.3	8.3	6.9	5	9.3	8.4			9.2	0	0.0
Se-D	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050			5.00E-05	0	0.0
Na-D	mg/L	11.6	11.4	11.5	11.6	9.66	5	11.6	11.15			11.6	0	0.0
Sr-D	mg/L	0.0573	0.0613	0.0677	0.0540	0.0479	5	0.0677	0.0576			0.0651	0	0.0
Zn-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Notes: *Calcula	ted guideline. S	ee Exceedance Table.												
Eactor applied t	n less-than resu	Its when calculating statisti	cs: 0.5											

EMS ID		E286930								Water Qualit	y Guidelines			
StnName		Quinsam River Downs	stream 1											
StnCode		QRDS1												
													Count of results	Percent of results
Date	Unit	28-Mar-24	3-Apr-24	8-Apr-24	15-Apr-24	22-Apr-24	Count	Max	5 in 30 Av	Chronic	Acute	90th Percentile	exceeding standard	exceeding standard
oH-F	pH Units	7.45	7.35	7.59	7.98	8.03	5	8.03	7.68			8.01	0	0.0
Cond-F	uS/cm	139.9	134.9	139.4	145.9	116.2	5	145.9	135.3			143.5	0	0.0
SO4-D	mg/L	24	27	27	25	20	5	27	24.6	128		27	0	0.0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0	0.0
TSS	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50			0.5	0	0.0
Alk-T	mg/L	37	37	38	38	35	5	38	37.0			38	0	0.0
AI-T	mg/L	0.0223	0.0212	0.0208	0.0185	0.0155	5	0.0223	0.0197	·		0.0219	0	0.0
As-T	mg/L	0.00052	0.00055	0.00060	0.00056	0.00041	5	0.00060	0.00053	0.005		0.00058	0	0.0
Ba-T	mg/L	0.0025	0.0024	0.0024	0.0022	0.0019	5	0.0025	0.0023	1		0.0025	0	0.0
В-Т	mg/L	<0.050	0.054	0.053	<0.050	<0.050	5	0.054	0.0364	1.2		0.0536	0	0.0
Bicarb	mg/L	45	45	46	46	43	5	46	45.0			46	0	0.0
Cd-T	mg/L	<0.000010	<0.000010	<0.00010	<0.00010	<0.000010	5	<0.000010	0.0000050		-	5.00E-06	0	0.0
Ca-T	mg/L	10.6	10.9	11.8	10.2	9.26	5	11.8	10.55			11.44	0	0.0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.11	0.0001	0	0.0
Cu-T	mg/L	<0.00050	0.00058	0.00053	0.00052	<0.00050	5	0.00058	0.000426			0.00056	0	0.0
Hard-T	mg/L	32.0	33.3	36.0	31.4	27.6	5	36.0	32.1			34.9	0	0.0
Fe-T	mg/L	0.038	0.034	0.037	0.032	0.027	5	0.038	0.034		1	0.038	0	0.0
Pb-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0	0.0
Mg-T	mg/L	1.32	1.49	1.56	1.42	1.08	5	1.56	1.37			1.53	0	0.0
Mn-T	mg/L	0.0026	0.0028	0.0030	0.0030	0.0029	5	0.0030	0.0029	0.737	0.8706	0.003	0	0.0
Mo-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0	0.0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025		0.0005	0	0.0
K-T	mg/L	0.198	0.210	0.218	0.216	0.169	5	0.218	0.202			0.217	0	0.0
S-T	mg/L	7.7	8.3	8.6	7.9	6	5	8.6	7.7			8.5	0	0.0
Se-T	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	5	<0.00010	0.000050	0.002		5.00E-05	0	0.0
Ag-T	mg/L	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	5	<0.000020	0.0000100	0.00005	0.0001	1.00E-05	0	0.0
Na-T	mg/L	10.9	11.5	12.3	11.6	9.03	5	12.3	11.07			12.02	0	0.0
Sr-T	mg/L	0.0568	0.0567	0.0630	0.0531	0.0465	5	0.0630	0.0552	0.0075	0.000	0.0605	0	0.0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Al-D	mg/L	0.0181	0.0174	0.0174	0.0148	0.0137	5	0.0181	0.0163			0.0178	0	0.0
As-D	mg/L	0.00052	0.00053	0.00053	0.00048	0.00046	5	0.00053	0.00050			0.00053	0	0.0
Ba-D	mg/L	0.0025	0.0026	0.0025	0.0024	0.0021	5	0.0026	0.0024			0.0026	0	0.0
B-D	mg/L	0.050	0.052	0.052 <0.000010	<0.050	<0.050	5	0.052	0.0408 0.000068	0.000007	0.00047	0.052	0	0.0
Cd-D	mg/L	<0.00010	<0.000010		<0.00010	0.000014	5	0.000014		0.000087	0.00017	1.04E-05	0	0.0
Ca-D	mg/L	11.4	11.8	12.0	11.1	10.7	5	12.0	11.4			11.9	0	0.0
Cr-D Co-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050		 	0.0005	0	0.0
Cu-D	mg/L mg/L	<0.00020 0.00054	<0.00020 0.00051	<0.00020 0.00052	<0.00020 0.00055	<0.00020 0.00052	5	<0.00020 0.00055	0.000100 0.00053	*	*	0.0001 0.00055	5	100.0
	-									-	-			
Hard-D	mg/L	35.0 2.8	36.1 2.8	36.4 2.8	33.8 2.5	32.6 2.5	5	36.4 2.8	34.8 2.7		 	36.3 2.8	0	0.0
DOC Fe-D	mg/L mg/L	0.0243	0.0225	0.0233	0.0214	0.0188	5	0.0243	0.0221		0.35	0.0239	0	0.0
Pb-D	mg/L mg/L	<0.00243	<0.00225	<0.00233	<0.00214	<0.0020	5	<0.0020	0.00221		0.55	0.0239	0	0.0
		1.56	1.59	1.58	1.46	1.43	5	1.59	1.52			1.59	0	0.0
Mg-D Mn-D	mg/L mg/L	0.0019	0.0018	1.58 0.0016	0.0017	0.0015	5	0.0019	0.0017			0.0019	0	0.0
Mo-D	mg/L	<0.0019	<0.0018	<0.0016	<0.0017	<0.0015	5	<0.0019	0.0017			0.0019	0	0.0
VIO-D VI-D	mg/L mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
VI-D	-	0.218	0.230	0.231	0.220	0.201	5	0.231	0.00050			0.0005	0	0.0
K-D S-D	mg/L	0.218 8.7	9.2	9.8	8.3	7.4	5	9.8	8.7			9.6	0	0.0
Se-D	mg/L mg/L	<0.00010	<0.00010	<0.00010	8.3 <0.00010	<0.00010	5	<0.00010	0.000050			5.00E-05	0	0.0
Na-D	mg/L mg/L	12.6	12.5	12.7	12.5	<0.00010 11.4	5	12.7	12.3			12.7	0	0.0
	-	0.0590	0.0622	0.0678	0.0569	0.0501	5	0.0678	0.0592			0.0656	0	0.0
Sr-D Zn-D	mg/L mg/L	<0.0590	<0.0622	<0.0678	<0.0569	<0.0501	5	<0.0050	0.0592	0.0075	0.033	0.0656	0	0.0
			<0.0050	<u.uu5u< td=""><td><u.uu5u< td=""><td><u.u05u< td=""><td>1 5</td><td><0.0050</td><td>0.00250</td><td>0.0075</td><td>0.033</td><td>0.0025</td><td>U</td><td>1 0.0</td></u.u05u<></td></u.uu5u<></td></u.uu5u<>	<u.uu5u< td=""><td><u.u05u< td=""><td>1 5</td><td><0.0050</td><td>0.00250</td><td>0.0075</td><td>0.033</td><td>0.0025</td><td>U</td><td>1 0.0</td></u.u05u<></td></u.uu5u<>	<u.u05u< td=""><td>1 5</td><td><0.0050</td><td>0.00250</td><td>0.0075</td><td>0.033</td><td>0.0025</td><td>U</td><td>1 0.0</td></u.u05u<>	1 5	<0.0050	0.00250	0.0075	0.033	0.0025	U	1 0.0
		See Exceedance Table. ults when calculating statisti												

Page	EMS ID		E292113								Water Qualit	y Guidelines			
No. Page P	StnName	7										,			
West 1981 23 May 24 3 App 24 1 App 24 1 5 App 24 23	StnCode														
West 1981 23 May 24 3 App 24 1 App 24 1 5 App 24 23			•												
## ## 19495														Count of results	Percent of results
Mart Mart 1008 1237 1391 131 1258 5 1251 1311 1 1359 0 0 0	Date	Unit	28-Mar-24	3-Apr-24	8-Apr-24	15-Apr-24	22-Apr-24	Count	Max	5 in 30 Av	Chronic	Acute	90th Percentile	exceeding standard	exceeding standard
10	pH-F	pH Units	7.19	7.24	7.6	7.26	7.57	5	7.6	7.37			7.59	0	0.0
19	Cond-F	uS/cm	130.8	128.7	139.1	131	125.9	5	139.1	131.1			135.9	0	0.0
10	SO4-D	mg/L	24	25	26	25	19	5	26	23.8	128		25.6	0	0.0
S	CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0	0.0
Ref mg/L 55 37 37 37 37 37 37 36 5 37 38 4	TSS		<1.0	1.6	<1.0	<1.0	<1.0	5	1.6	0.72			1.16	0	0.0
File	Alk-T			37	37	37	36	5	37	36.4			37	0	0.0
art myth 0.0028 0.0035 0.0005 0.0002 0.0002 0.0002 5 0.0002 12 1 0.0007 0 0 0.00000	Al-T			0.0266	0.0246	0.0223		5			*		0.0268	0	0.0
Part	As-T	mg/L	0.00053	0.00054	0.00060	0.00052	0.00047	5	0.00060	0.00053	0.005		0.00058	0	0.0
Table Page	Ва-Т		0.0028	0.0025	0.0025	0.0022	0.0022	5	0.0028	0.0024	1		0.0027	0	0.0
Sept	В-Т							5	0.054		1.2			0	0.0
## 1 mg/L 0.000019 0.000019 0.000019 0.000010 0.000010 0.0000010 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000	Bicarb				46			5						0	0.0
NT	Cd-T														
Part	Ca-T							_							
Part mg/L 0.000020 0.00020 0.00020 0.000020 0.000020 0.000020 0.000020 0.000010 0.000010 0.000020	Cr-T							5							
mg/L -0.00096	Co-T										0.004	0.11			
mg/L 33.7 33.1 36.3 30.6 33.1 5 36.3 32.8	Cu-T														
PT	Hard-T										l				
Part mg/L	Fe-T	-									i .	1			
	Pb-T										0.004				
The T mg/L 0.0044 0.0045 0.0045 0.0041 0.0046 5 0.0046 0.0044 0.737 0.8706 0.0046 0 0.0057 0.0075 0.0075 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00010	Mg-T										0.001	0.0170			
	Mn-T										0.737	0.8706			
	Mo-T														
Mathematical Color Mathema	Ni-T	-										0			
T	K-T										0.025				
Part	S-T														
## mg/L	Se-T										0.002				
## ## ## ## ## ## ## ## ## ## ## ## ##	Ag-T											0.0001			
mg/L 0.0585 0.0543 0.0618 0.0497 0.0459 5 0.0618 0.0540 0.0605 0 0.0	Na-T										0.00005	0.0001			
mg/L < 0.0050	Sr-T														
D	Zn-T										0.0075	0.033			
Po	Al-D										0.0073	0.033			
a-D mg/L 0.0027 0.0027 0.0027 0.0025 0.0023 5 0.0023 5 0.0026 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0028 0.	As-D														
Decoration Mg/L	Ba-D														
A-D mg/L <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00011 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0.00011 <0	B-D														
a-D mg/L 11.7 11.4 11.8 11.1 11.5 5 11.8 11.5 11.8 0 0.00 -D mg/L <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.00010 <0.00010 <0.00010 0.0001	Cd-D										0.000087	0.00017			
Po mg/L	Ca-D										0.000007	0.00017			
Column C	Cr-D														
u-D mg/L 0.00053 0.00054 0.00052 0.00052 0.00054 5 0.00054 5 0.00053 * * 0.00054 5 100.0 ard-D mg/L 35.9 34.8 35.9 33.8 34.6 5 35.9 35.0 35.0 35.9 0 0.0.0 oc mg/L 2.6 2.9 2.5 2.4 2.2 5 2.9 2.5 2.8 0 0.00 a-D mg/L 0.0549 0.0475 0.0443 0.0434 0.0409 5 0.0549 0.0462 0.35 0.0519 0 0.0 a-D mg/L 0.00020 0.00020 0.00020 0.00020 0.00020 5 0.00020 5 0.00020 0.00010 0.0001 0 0.00 a-D mg/L 0.0041 0.0040 0.035 1.55 1.55 1.49 1.44 5 1.63 1.53 1.16 0 0.00 a-D mg/L 0.0041 0.0040 0.0035 0.0035 0.0035 0.0036 5 0.0041 0.0037 0.0041 0.0041 0 0.0010 a-D mg/L 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 5 0.0010 0.00050 0.00050 0 0.0005 a-D mg/L 0.010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 5 0.0010 0.00050 0 0.0005 a-D mg/L 0.0212 0.226 0.229 0.216 0.199 5 0.229 0.216 0.228 0 0.0 a-D mg/L 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00050 0 0.00 a-D mg/L 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 a-D mg/L 1.7 11.9 12.3 11.9 11.2 5 12.3 11.8 12.1 0 0.0 a-D mg/L 0.0585 0.0595 0.0649 0.0567 0.0502 5 0.0649 0.0580 0.0025 0.0055 0.0051 bres: "Calculated guideline. See Exceedance Table.	Co-D										1				
ard-D mg/L 35.9 34.8 35.9 33.8 34.6 5 35.9 35.0 35.0 35.9 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cu-D										*	*			
OC mg/L 2.6 2.9 2.5 2.4 2.2 5 2.9 2.5 2.8 0 0.0 e-D mg/L 0.0549 0.0475 0.0443 0.0434 0.0409 5 0.0549 0.0462 0.35 0.0519 0 0.0 b-D mg/L <0.00020 <0.00020 <0.00020 <0.00020 5 <0.00020 0.00010 0 0.0 lg-D mg/L 1.63 1.55 1.55 1.49 1.44 5 1.63 1.53 1.6 0 0.0 ln-D mg/L 0.0041 0.0040 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0036 5 0.0041 0.0037 0.0041 0 0.0 lob mg/L <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 5 <0.0010 0.00050 0.00050 0.0 0.0 l-D mg/L <0											 				
e-D mg/L 0.0549 0.0475 0.0443 0.0434 0.0409 5 0.0549 0.0462 0.35 0.0519 0 0.0 0.0 mg/L 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 5 0.00020 0.00010 0.00011 0 0.0 0.0 0.0 0.0 0.0	DOC	-													
Deb mg/L <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00020 <0.00010 <0.00010 <0.00011 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0	Fe-D											0.35			
	Pb-D										 	0.33			
In-D mg/L 0.0041 0.0040 0.0035 0.0035 0.0036 5 0.0041 0.0037 0.0041 0 0.0051 0.0051 0.0051 0.0051 0.0051 0.0055											 	-			
No-D mg/L <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010											l	-			
HD mg/L < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0005 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.											 				
D mg/L 0.212 0.226 0.229 0.216 0.199 5 0.229 0.216 0.228 0 0.00											 				
D mg/L 8.8 8.8 8.9 8.2 7.1 5 8.9 8.4 8.9 0 0.0 e-D mg/L <0.00010 <0.00010 <0.00010 <0.00010 5 <0.00010 0.00050 5.00E-05 0 0.0 a-D mg/L 11.7 11.9 12.3 11.9 11.2 5 12.3 11.8 12.1 0 0.0 v-D mg/L <0.0585 0.0595 0.0649 0.0567 0.0502 5 0.0649 0.0580 0.0627 0 0.0 n-D mg/L <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0	K-D										 	-			
e-D mg/L <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 5 <0.00010 0.000050 5.00E-05 0 0.0 e-D mg/L 11.7 11.9 12.3 11.9 11.2 5 12.3 11.8 12.1 0 0.0 0.0 e-D mg/L 0.0585 0.0595 0.0649 0.0567 0.0502 5 0.0649 0.0580 0.0580 0.0627 0 0.0 e-D mg/L <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 5 <0.0050 0.0050 0.0055 0.0055 0.0 0.0 0.0		-									l	 			
a-D mg/L 11.7 11.9 12.3 11.9 11.2 5 12.3 11.8 12.1 0 0.0 -D mg/L 0.0585 0.0595 0.0649 0.0567 0.0502 5 0.0649 0.0580 0.0627 0 0.0 -D mg/L 0.0050 <0.0050 <0.0050 <0.0050 <0.0050 0.0	S-D										-				
-D mg/L 0.0585 0.0595 0.0649 0.0567 0.0502 5 0.0649 0.0580 0.0627 0 0.0 n-D mg/L <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 5 <0.0050 0.0025 0.0075 0.033 0.0025 0 0.0 tes: "Calculated guideline. See Exceedance Table.		-									 				
n-D mg/L < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0											 				
otes: "Calculated guideline. See Exceedance Table.											0.0075	0.022			
				<0.0050	<0.0050	<0.0050	<0.0050	1 5	<0.0050	0.00250	U.00/5	0.033	0.0025	U	U.U

Table 43 Spring Rivers 7 Page(s)

EMS ID		E299256								Water Qualit	y Guidelines			
StnName	Iror	River & Quinsam Riv	ver .											
StnCode		IRQR												
													Count of results	Percent of results
Date	Unit	28-Mar-24	3-Apr-24	8-Apr-24	15-Apr-24	22-Apr-24	Count	Max	5 in 30 Av	Chronic	Acute	90th Percentile	exceeding standard	exceeding standard
pH-F	pH Units	7.41	7.56	7.45	7.18	7.52	5	7.56	7.42			7.54	0	0.0
Cond-F	uS/cm	99.5	106.9	114.7	107.1	112.4	5	114.7	108.1			113.8	0	0.0
SO4-D	mg/L	16	16	20	18	16	5	20	17.2	128		19.2	0	0.0
CI-D	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50	150	600	0.5	0	0.0
TSS	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	5	<1.0	0.50			0.5	0	0.0
Alk-T	mg/L	32	31	36	35	35	5	36	33.8			35.6	0	0.0
Al-T	mg/L	0.0353	0.0414	0.0245	0.0240	0.022	5	0.0414	0.0294			0.039	0	0.0
As-T	mg/L	0.00067	0.00070	0.00070	0.00066	0.00058	5	0.00070	0.00066	0.005		0.0007	0	0.0
Ba-T	mg/L	0.0032	0.0032	0.0026	0.0027	0.0024	5	0.0032	0.0028	1		0.0032	0	0.0
B-T	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250	1.2		0.025	0	0.0
Bicarb	mg/L	39	38	44	43	42	5	44	41.2	-	-	43.6	0	0.0
Cd-T	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	 		5.00E-06	0	0.0
Ca-T	mg/L	9.75	10.5	9.76	9.67	9.64	5	10.5	9.86	-		10.2	0	0.0
Cr-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.004	0.11	0.0005	0	0.0
Co-T Cu-T	mg/L	<0.00020 0.00056	<0.00020 0.00070	<0.00020 <0.00050	<0.00020 0.00052	<0.00020 <0.00050	5	<0.00020 0.00070	0.000100	0.004	0.11	0.0001 0.000644	0	0.0
Cu-I Hard-T	mg/L mg/L	29.0	31.3	<0.00050 29.3	29.0	<0.00050 28.8	5	31.3	0.000456 29.5	 		30.5	0	0.0
Fe-T	mg/L mg/L	0.056	0.060	29.3 0.052	0.051	0.05	5	0.060	0.054	-	1	0.058	0	0.0
Pb-T	mg/L	<0.00020	<0.00020	<0.0020	<0.0010	<0.0020	5	<0.00020	0.000100	0.004	0.0176	0.0001	0	0.0
	mg/L	1.14	1.24	1.21	1.18	1.14	5	1.24	1.18	0.004	0.0176	1.23	0	0.0
Mg-T Mn-T	mg/L	0.0030	0.0031	0.0030	0.0030	0.0034	5	0.0034	0.0031	0.737	0.8706	0.0033	0	0.0
Mo-T	mg/L	<0.0010	<0.0031	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	7.6	46	0.0005	0	0.0
Ni-T	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050	0.025	40	0.0005	0	0.0
K-T	mg/L	0.170	0.186	0.171	0.178	0.16	5	0.186	0.173	0.023		0.183	0	0.0
S-T	mg/L	5.3	5.5	5.4	5.4	5	5	5.5	5.3			5.5	0	0.0
Se-T	mg/L	<0.00010	0.00010	<0.00010	<0.00010	<0.00010	5	0.00010	0.000060	0.002		8.00E-05	0	0.0
Ag-T	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.0000100	0.00005	0.0001	1.00E-05	0	0.0
Na-T	mg/L	7.03	7.62	7.99	7.89	7.72	5	7.99	7.65	0.00003	0.0001	7.95	0	0.0
Sr-T	mg/L	0.0429	0.0469	0.0430	0.0437	0.0397	5	0.0469	0.0432			0.0456	0	0.0
Zn-T	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
Al-D	mg/L	0.0290	0.0305	0.0210	0.0199	0.0154	5	0.0305	0.0232			0.0299	0	0.0
As-D	mg/L	0.00068	0.00064	0.00072	0.00070	0.00063	5	0.00072	0.00067			0.00071	0	0.0
Ba-D	mg/L	0.0034	0.0031	0.0031	0.0030	0.0027	5	0.0034	0.0031			0.0033	0	0.0
B-D	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050	5	<0.050	0.0250			0.025	0	0.0
Cd-D	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	5	<0.000010	0.0000050	0.000087	0.00017	5.00E-06	0	0.0
Ca-D	mg/L	11.1	10.3	11.2	10.6	11	5	11.2	10.8			11.2	0	0.0
Cr-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Co-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0	0.0
Cu-D	mg/L	0.00055	0.00058	0.00053	0.00057	0.00054	5	0.00058	0.00055	*	*	0.00058	5	100.0
Hard-D	mg/L	33.1	30.8	33.7	31.9	32.9	5	33.7	32.5			33.5	0	0.0
DOC	mg/L	2.9	3.0	3.0	3.0	2.3	5	3.0	2.8			3	0	0.0
Fe-D	mg/L	0.0382	0.0354	0.0368	0.0342	0.0329	5	0.0382	0.0355		0.35	0.0376	0	0.0
Pb-D	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	5	<0.00020	0.000100			0.0001	0	0.0
Mg-D	mg/L	1.29	1.25	1.38	1.29	1.31	5	1.38	1.30	-		1.35	0	0.0
Mn-D	mg/L	0.0026	0.0026	0.0028	0.0026	0.0028	5	0.0028	0.0027			0.0028	0	0.0
Mo-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050			0.0005	0	0.0
Ni-D	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	5	<0.0010	0.00050		1	0.0005	0	0.0
K-D	mg/L	0.190	0.187	0.207	0.193	0.188	5	0.207	0.193	-		0.201	0	0.0
S-D	mg/L	5.8	5.5	6.7	6.2	5.8	5	6.7	6.0	-		6.5	0	0.0
Se-D	mg/L	0.00011	0.00012	<0.00010	0.00010	<0.00010	5	0.00012	0.000086	-		0.000116	0	0.0
Na-D	mg/L	7.66	7.53	9.29	8.77	8.93	5	9.29	8.44	<u> </u>		9.15	0	0.0
Sr-D	mg/L	0.0469	0.0471	0.0528	0.0501	0.0456	5	0.0528	0.0485	0.0075	0.005	0.0517	0	0.0
Zn-D	mg/L	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	5	<0.0050	0.00250	0.0075	0.033	0.0025	0	0.0
	-	Exceedance Table.												
ctor applied	to iess-than result:	s when calculating statisti	cs: v.5											

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
INF	8-Apr-24	H2S	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
INF	8-Apr-24	S2-T	mg/L	0.0018	0.0018	<0.0018	<0.0018	0.0	1.00
INF	8-Apr-24	SO4-D	mg/L	10	5	610	620	1.6	0.98
INF	27-May-24	H2S	mg/L	0.002	0.002	0.0036	<0.0020	57.1	1.80
INF	27-May-24	S2-T	mg/L	0.0018	0.0018	0.0034	<0.0018	61.5	1.89
INF	27-May-24	SO4-D	mg/L	10	10	660	670	1.5	0.99
LLE	13-May-24	SO4-D	mg/L	5	5	220	220	0.0	1.00
LLE	21-May-24	SO4-D	mg/L	5	5	220	220	0.0	1.00
LLM4	17-Apr-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LLM4	17-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LLM4	17-Apr-24	Al-D	mg/L	0.003	0.003	0.0275	0.0264	4.1	1.04
LLM4	17-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
LLM4	17-Apr-24	Alk-T	mg/L	1	1	27	28	3.6	0.96
LLM4	17-Apr-24	Al-T	mg/L	0.003	0.003	0.0315	0.0318	0.9	0.99
LLM4	17-Apr-24	As-D	mg/L	0.003	0.003	0.00313	0.00318	0.9	1.00
LLM4	· ·				0.0001		0.00031	6.5	0.94
LLIVI4 LLM4	17-Apr-24	As-T	mg/L	0.0001		0.00030 0.0052	0.00032	3.8	0.94
	17-Apr-24	Ba-D Ba-T	mg/L	0.001	0.001	0.0052		3.8 4.1	
LLM4	17-Apr-24	B-D	mg/L	0.001	0.001 0.05	0.0048	0.0050	3.8	0.96 0.96
LLM4	17-Apr-24		mg/L	0.05			0.053		
LLM4	17-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLM4	17-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLM4	17-Apr-24	B-T	mg/L	0.05	0.05	<0.050	0.050	0.0	1.00
LLM4	17-Apr-24	Ca-D	mg/L	0.05	0.05	22.4	25.2	11.8	0.89
LLM4	17-Apr-24	Ca-T	mg/L	0.05	0.05	19.8	22.2	11.4	0.89
LLM4	17-Apr-24	Cd-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLM4	17-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLM4	17-Apr-24	Cl-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
LLM4	17-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLM4	17-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLM4	17-Apr-24	Cr-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLM4	17-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLM4	17-Apr-24	Cu-D	mg/L	0.0002	0.0002	0.00040	0.00042	4.9	0.95
LLM4	17-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LLM4	17-Apr-24	DOC	mg/L	0.5	0.5	3.7	4.3	15.0	0.86
LLM4	17-Apr-24	Fe-D	mg/L	0.005	0.005	0.0384	0.0403	4.8	0.95
LLM4	17-Apr-24	Fe-T	mg/L	0.01	0.01	0.055	0.058	5.3	0.95
LLM4	17-Apr-24	Hard-D	mg/L	0.5	0.5	68.2	75.4	10.0	0.90
LLM4	17-Apr-24	Hard-T	mg/L	0.5	0.5	60.6	67.8	11.2	0.89
LLM4	17-Apr-24	K-D	mg/L	0.05	0.05	0.257	0.269	4.6	0.96
LLM4	17-Apr-24	K-T	mg/L	0.05	0.05	0.225	0.250	10.5	0.90
LLM4	17-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LLM4	17-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LLM4	17-Apr-24	Mg-D	mg/L	0.05	0.05	3.00	3.07	2.3	0.98
LLM4	17-Apr-24	Mg-T	mg/L	0.05	0.05	2.74	3.00	9.1	0.91
LLM4	17-Apr-24	Mn-D	mg/L	0.001	0.001	0.0103	0.0108	4.7	0.95
LLM4	17-Apr-24	Mn-T	mg/L	0.001	0.001	0.0106	0.0123	14.8	0.86
LLM4	17-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLM4	17-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLM4	17-Apr-24	Na-D	mg/L	0.05	0.05	6.48	6.87	5.8	0.94
LLM4	17-Apr-24	Na-T	mg/L	0.05	0.05	5.75	6.47	11.8	0.89
LLM4	17-Apr 24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLM4	17-Apr 24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLM4	17-Apr-24	N-NO23	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLM4	17-Apr-24 17-Apr-24	Pb-D	mg/L	0.002	0.002	<0.020	<0.020	0.0	1.00
LLM4	17-Apr-24 17-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
LLM4	17-Apr-24	P-D	mg/L	0.003	0.003	0.0032	0.0032	0.0	1.00
LLM4	17-Apr-24	P-T	mg/L	0.003	0.003	0.0047	0.0043	8.9	1.09
LLM4	17-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LLM4	17-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LLM4	17-Apr-24	S-D	mg/L	3	3	19.4	20.6	6.0	0.94
LLM4	17-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLM4	17-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLM4	17-Apr-24	Si-D	mg/L	0.1	0.1	3.27	3.41	4.2	0.96
LLM4	17-Apr-24	Si-T	mg/L	0.1	0.1	3.08	3.02	2.0	1.02
LLM4	17-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLM4	17-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLM4	17-Apr-24	SO4-D	mg/L	1	1	51	58	12.8	0.88
LLM4	17-Apr-24	Sr-D	mg/L	0.001	0.001	0.148	0.157	5.9	0.94
LLM4	17-Apr-24	Sr-T	mg/L	0.001	0.001	0.131	0.149	12.9	0.88
LLM4	17-Apr-24	S-T	mg/L	3	3	16.9	19.6	14.8	0.86
LLM4	17-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLM4	17-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLM4	17-Apr-24	TI-D	mg/L	0.00001	0.00001	<0.00010	<0.000010	0.0	1.00
LLM4	17-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLM4	17-Apr-24	Turb	NTU	0.00001	0.00001	0.40	0.51	24.2	0.78
LLM4	17-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLM4	17-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLM4		V-D	-	0.0001	0.0001	<0.0050	<0.0050	0.0	1.00
	17-Apr-24		mg/L						
LLM4	17-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLM4	17-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLM4	17-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLM4	17-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLM4	17-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LLO	22-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LLO	22-Apr-24	Al-D	mg/L	0.003	0.003	0.0249	0.0246	1.2	1.01
LLO	22-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
LLO	22-Apr-24	Alk-T	mg/L	1	1	24	24	0.0	1.00
LLO	22-Apr-24	Al-T	mg/L	0.003	0.003	0.0234	0.025	6.6	0.94
LLO	22-Apr-24	As-D	mg/L	0.0001	0.0001	0.00031	0.00032	3.2	0.97
LLO	22-Apr-24	As-T	mg/L	0.0001	0.0001	0.00029	0.00031	6.7	0.94
LLO	22-Apr-24	Ba-D	mg/L	0.001	0.001	0.0045	0.0045	0.0	1.00
LLO	22-Apr-24	Ba-T	mg/L	0.001	0.001	0.0042	0.0039	7.4	1.08
LLO	22-Apr-24	B-D	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
LLO	22-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
LLO	22-Apr-24	Ca-D	mg/L	0.05	0.05	19.1	17.9	6.5	1.07
LLO	22-Apr-24	Ca-T	mg/L	0.05	0.05	16.2	16.2	0.0	1.00
LLO	22-Apr-24	Cd-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLO	22-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLO	22-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
LLO	22-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLO	22-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLO	22-Apr-24 22-Apr-24	Cr-D	mg/L	0.0002	0.0002	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24 22-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24 22-Apr-24	Cu-D	mg/L	0.001	0.001	0.00010	0.00044	4.7	0.95
LLO	22-Apr-24 22-Apr-24	Cu-D	mg/L	0.0002	0.0002	<0.00042	<0.00044	0.0	1.00
LLO									
	22-Apr-24	DOC	mg/L	0.5	0.5	3.6	3.3	8.7	1.09
LLO	22-Apr-24	Fe-D	mg/L	0.005	0.005	0.0377	0.0355	6.0	1.06

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
LLO	22-Apr-24	Fe-T	mg/L	0.01	0.01	0.047	0.05	6.2	0.94
LLO	22-Apr-24	Hard-D	mg/L	0.5	0.5	58.2	55.1	5.5	1.06
LLO	22-Apr-24	Hard-T	mg/L	0.5	0.5	48.6	48.3	0.6	1.01
LLO	22-Apr-24	K-D	mg/L	0.05	0.05	0.21	0.206	1.9	1.02
LLO	22-Apr-24	K-T	mg/L	0.05	0.05	0.186	0.169	9.6	1.10
LLO	22-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LLO	22-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LLO	22-Apr-24	Mg-D	mg/L	0.05	0.05	2.56	2.5	2.4	1.02
LLO	22-Apr-24	Mg-T	mg/L	0.05	0.05	1.95	1.94	0.5	1.01
LLO	22-Apr-24	Mn-D	mg/L	0.001	0.001	0.0038	0.0037	2.7	1.03
LLO	22-Apr-24	Mn-T	mg/L	0.001	0.001	0.0058	0.0068	15.9	0.85
LLO	22-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Na-D	mg/L	0.05	0.05	5.36	5.22	2.6	1.03
LLO	22-Apr-24	Na-T	mg/L	0.05	0.05	4.36	4.36	0.0	1.00
LLO	22-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLO	22-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLO	22-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LLO	22-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LLO	22-Apr-24	S-D	mg/L	3	3	15.2	14.8	2.7	1.03
LLO	22-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Si-D	mg/L	0.1	0.1	3.4	3.27	3.9	1.04
LLO	22-Apr-24 22-Apr-24	Si-D	mg/L	0.1	0.1	2.57	2.58	0.4	1.00
LLO	22-Apr-24 22-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.4	1.00
LLO	22-Apr-24 22-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24 22-Apr-24	SO4-D	mg/L	1	1	42	42	0.0	1.00
LLO	·	Sr-D		0.001	0.001	0.115		1.8	1.00
LLO	22-Apr-24		mg/L				0.113	0.5	
LLO	22-Apr-24 22-Apr-24	Sr-T	mg/L	0.001	0.001	0.0985	0.098	5.1	1.01
LLO		S-T Ti-D	mg/L	0.005	_	<0.0050	11.4	0.0	1.05
	22-Apr-24		mg/L		0.005		<0.0050		1.00
LLO	22-Apr-24	Ti-T	mg/L	0.005	0.005 0.00001	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	TI-D	mg/L	0.00001		<0.000010	<0.000010	0.0	1.00
LLO	22-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLO	22-Apr-24	TSS	mg/L	1	1	<1.0	1.6	46.2	0.62
LLO	22-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LLO	22-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LLO	22-Apr-24	Al-D	mg/L	0.003	0.003	0.0249	0.0249	0.0	1.00
LLO	22-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
LLO	22-Apr-24	Alk-T	mg/L	1	1	24	24	0.0	1.00
LLO	22-Apr-24	Al-T	mg/L	0.003	0.003	0.0234	0.0234	0.0	1.00
LLO	22-Apr-24	As-D	mg/L	0.0001	0.0001	0.00031	0.00031	0.0	1.00
LLO	22-Apr-24	As-T	mg/L	0.0001	0.0001	0.00029	0.00029	0.0	1.00
LLO	22-Apr-24	Ba-D	mg/L	0.001	0.001	0.0045	0.0045	0.0	1.00
LLO	22-Apr-24	Ba-T	mg/L	0.001	0.001	0.0042	0.0042	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
LLO	22-Apr-24	B-D	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
LLO	22-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
LLO	22-Apr-24	Ca-D	mg/L	0.05	0.05	19.1	19.1	0.0	1.00
LLO	22-Apr-24	Ca-T	mg/L	0.05	0.05	16.2	16.2	0.0	1.00
LLO	22-Apr-24	Cd-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLO	22-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLO	22-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
LLO	22-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLO	22-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLO	22-Apr-24	Cr-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Cu-D	mg/L	0.0002	0.0002	0.00042	0.00042	0.0	1.00
LLO	22-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LLO	22-Apr-24	DOC	mg/L	0.5	0.5	3.6	3.6	0.0	1.00
LLO	22-Apr-24	Fe-D	mg/L	0.005	0.005	0.0377	0.0377	0.0	1.00
LLO	22-Apr-24	Fe-T	mg/L	0.01	0.01	0.047	0.047	0.0	1.00
LLO	22-Apr-24	Hard-D	mg/L	0.5	0.5	58.2	58.2	0.0	1.00
LLO	22-Apr-24	Hard-T	mg/L	0.5	0.5	48.6	48.6	0.0	1.00
LLO	22-Apr-24	K-D	mg/L	0.05	0.05	0.21	0.21	0.0	1.00
LLO	22-Apr-24	K-T	mg/L	0.05	0.05	0.186	0.186	0.0	1.00
LLO	22-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LLO	22-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LLO	22-Apr-24	Mg-D	mg/L	0.05	0.05	2.56	2.56	0.0	1.00
LLO	22-Apr-24	Mg-T	mg/L	0.05	0.05	1.95	1.95	0.0	1.00
LLO	22-Apr-24	Mn-D	mg/L	0.001	0.001	0.0038	0.0038	0.0	1.00
LLO	22-Apr-24	Mn-T	mg/L	0.001	0.001	0.0058	0.0058	0.0	1.00
LLO	22-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Na-D	mg/L	0.05	0.05	5.36	5.36	0.0	1.00
LLO	22-Apr-24	Na-T	mg/L	0.05	0.05	4.36	4.36	0.0	1.00
LLO	22-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LLO	22-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLO	22-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LLO	22-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LLO	22-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LLO	22-Apr-24	S-D	mg/L	3	3	15.2	15.2	0.0	1.00
LLO	22-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Si-D	mg/L	0.1	0.1	3.4	3.4	0.0	1.00
LLO	22-Apr-24	Si-T	mg/L	0.1	0.1	2.57	2.57	0.0	1.00
LLO	22-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	SO4-D	mg/L	1	1	42	42	0.0	1.00
LLO	22-Apr-24	Sr-D	mg/L	0.001	0.001	0.115	0.115	0.0	1.00
LLO	22-Apr-24	Sr-T	mg/L	0.001	0.001	0.0985	0.0985	0.0	1.00
LLO	22-Apr-24	S-T	mg/L	3	3	12	12	0.0	1.00
LLO	22-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	TI-D	mg/L	0.00001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24 22-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LLO	22-Apr-24 22-Apr-24	TSS	mg/L	1	1	<1.0	<1.0	0.0	1.00
LLO	22-Apr-24 22-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
LLO	22-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LLO	22-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LLO	22-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LQL1	25-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LQL1	25-Apr-24	Al-D	mg/L	0.003	0.003	0.019	0.0194	2.1	0.98
LQL1	25-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
LQL1	25-Apr-24	Alk-T	mg/L	1	1	39	32	19.7	1.22
LQL1	25-Apr-24	Al-T	mg/L	0.003	0.003	0.0227	0.0268	16.6	0.85
LQL1	25-Apr-24	As-D	mg/L	0.0001	0.0001	0.00055	0.00053	3.7	1.04
LQL1	25-Apr-24	As-T	mg/L	0.0001	0.0001	0.00055	0.00047	15.7	1.17
LQL1	25-Apr-24	Ba-D	mg/L	0.001	0.001	0.003	0.0031	3.3	0.97
LQL1	25-Apr-24	Ba-T	mg/L	0.001	0.001	0.003	0.0025	18.2	1.20
LQL1	25-Apr-24	B-D	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
LQL1	25-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
LQL1	25-Apr-24	Ca-D	mg/L	0.05	0.05	10.4	9.94	4.5	1.05
LQL1	25-Apr-24 25-Apr-24	Ca-D	mg/L	0.05	0.05	9.27	8.12	13.2	1.14
LQL1	25-Apr-24 25-Apr-24	Cd-D	mg/L	0.00001	0.0001	0.000022	<0.000010	75.0	2.20
LQL1	25-Apr-24 25-Apr-24	Cd-D	mg/L	0.00001	0.00001	<0.000022	<0.000010	0.0	1.00
LQL1	25-Apr-24 25-Apr-24	Cl-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
LQL1	25-Apr-24 25-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LQL1	25-Apr-24 25-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LQL1	25-Apr-24 25-Apr-24	Cr-D	mg/L	0.0002	0.0002	<0.0010	<0.0010	0.0	1.00
LQL1		Cr-T		0.001	0.001				1.00
	25-Apr-24	Cu-D	mg/L			<0.0010 0.0006	<0.0010 0.00057	0.0	
LQL1	25-Apr-24		mg/L	0.0002	0.0002 0.0005			5.1	1.05
LQL1	25-Apr-24 25-Apr-24	Cu-T	mg/L	0.0005	0.0003	0.00055 2.9	<0.00050 3.1	9.5 6.7	1.10
LQL1		DOC Fo D	mg/L	0.5			0.0462		0.94
LQL1	25-Apr-24	Fe-D	mg/L	0.005	0.005	0.0396		15.4	0.86
LQL1	25-Apr-24	Fe-T	mg/L	0.01	0.01	0.063	0.057	10.0	1.11
LQL1	25-Apr-24	Hard-D	mg/L	0.5	0.5	31	29.9	3.6	1.04
LQL1	25-Apr-24	Hard-T	mg/L	0.5	0.5	28.1	24.5	13.7	1.15
LQL1	25-Apr-24	K-D	mg/L	0.05	0.05	0.191	0.183	4.3	1.04
LQL1	25-Apr-24	K-T	mg/L	0.05	0.05	0.165	0.143	14.3	1.15
LQL1	25-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LQL1	25-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LQL1	25-Apr-24	Mg-D	mg/L	0.05	0.05	1.25	1.23	1.6	1.02
LQL1	25-Apr-24	Mg-T	mg/L	0.05	0.05	1.19	1.03	14.4	1.16
LQL1	25-Apr-24	Mn-D	mg/L	0.001	0.001	0.0019	0.0014	30.3	1.36
LQL1	25-Apr-24	Mn-T	mg/L	0.001	0.001	0.0044	0.0038	14.6	1.16
LQL1	25-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24	Na-D	mg/L	0.05	0.05	7.85	7.73	1.5	1.02
LQL1	25-Apr-24	Na-T	mg/L	0.05	0.05	7.2	6.28	13.6	1.15
LQL1	25-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24	N-NO23	mg/L	0.02	0.02	<0.020	<0.020	0.0	1.00
LQL1	25-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LQL1	25-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LQL1	25-Apr-24	P-D	mg/L	0.003	0.003	0.0039	0.0042	7.4	0.93

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
LQL1	25-Apr-24	P-T	mg/L	0.003	0.003	0.0052	0.0044	16.7	1.18
LQL1	25-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LQL1	25-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LQL1	25-Apr-24	S-D	mg/L	3	3	5.6	5.3	5.5	1.06
LQL1	25-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	0.0001	0.0	1.00
LQL1	25-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	Si-D	mg/L	0.1	0.1	2.54	2.4	5.7	1.06
LQL1	25-Apr-24	Si-T	mg/L	0.1	0.1	2.27	1.99	13.1	1.14
LQL1	25-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	SO4-D	mg/L	1	1	15	17	12.5	0.88
LQL1	25-Apr-24	Sr-D	mg/L	0.001	0.001	0.0479	0.0478	0.2	1.00
LQL1	25-Apr-24	Sr-T	mg/L	0.001	0.001	0.0427	0.037	14.3	1.15
LQL1	25-Apr-24	S-T	mg/L	3	3	5	4.6	8.3	1.09
LQL1	25-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	TI-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LQL1	25-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LQL1	25-Apr-24	Turb	NTU	0.1	0.1	0.4	0.4	0.0	1.00
LQL1	25-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LQL1	25-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
LQL1	25-Apr-24	Al-D	mg/L	0.003	0.003	0.019	0.019	0.0	1.00
LQL1	25-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
LQL1	25-Apr-24	Alk-T	mg/L	1	1	39	39	0.0	1.00
LQL1	25-Apr-24	Al-T	mg/L	0.003	0.003	0.0227	0.0227	0.0	1.00
LQL1	25-Apr-24	As-D	mg/L	0.0001	0.0001	0.00055	0.00055	0.0	1.00
LQL1	25-Apr-24	As-T	mg/L	0.0001	0.0001	0.00055	0.00055	0.0	1.00
LQL1	25-Apr-24	Ba-D	mg/L	0.001	0.001	0.003	0.003	0.0	1.00
LQL1	25-Apr-24	Ba-T	mg/L	0.001	0.001	0.003	0.003	0.0	1.00
LQL1	25-Apr-24	B-D	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
LQL1	25-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
LQL1	25-Apr-24	Ca-D	mg/L	0.05	0.05	10.4	10.4	0.0	1.00
LQL1	25-Apr-24	Ca-T	mg/L	0.05	0.05	9.27	9.27	0.0	1.00
LQL1	25-Apr-24	Cd-D	mg/L	0.00001	0.00001	0.000022	0.000022	0.0	1.00
LQL1	25-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LQL1	25-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
LQL1	25-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LQL1	25-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LQL1	25-Apr-24	Cr-D	mg/L	0.0002	0.0002	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24 25-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24 25-Apr-24	Cu-D	mg/L	0.001	0.001	0.0010	0.0006	0.0	1.00
LQL1	25-Apr-24 25-Apr-24	Cu-D	mg/L	0.0002	0.0002	0.0005	0.00055	0.0	1.00
LQL1 LQL1	25-Apr-24 25-Apr-24	DOC	-	0.0005	0.0005	2.9	2.9	0.0	1.00
	·		mg/L						
LQL1	25-Apr-24	Fe-D	mg/L	0.005	0.005	0.0396	0.0396	0.0	1.00
LQL1	25-Apr-24	Fe-T	mg/L	0.01	0.01	0.063	0.063	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
LQL1	25-Apr-24	Hard-D	mg/L	0.5	0.5	31	31	0.0	1.00
LQL1	25-Apr-24	Hard-T	mg/L	0.5	0.5	28.1	28.1	0.0	1.00
LQL1	25-Apr-24	K-D	mg/L	0.05	0.05	0.191	0.191	0.0	1.00
LQL1	25-Apr-24	K-T	mg/L	0.05	0.05	0.165	0.165	0.0	1.00
LQL1	25-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LQL1	25-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
LQL1	25-Apr-24	Mg-D	mg/L	0.05	0.05	1.25	1.25	0.0	1.00
LQL1	25-Apr-24	Mg-T	mg/L	0.05	0.05	1.19	1.19	0.0	1.00
LQL1	25-Apr-24	Mn-D	mg/L	0.001	0.001	0.0019	0.0019	0.0	1.00
LQL1	25-Apr-24	Mn-T	mg/L	0.001	0.001	0.0044	0.0044	0.0	1.00
LQL1	25-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24	Na-D	mg/L	0.05	0.05	7.85	7.85	0.0	1.00
LQL1	25-Apr-24	Na-T	mg/L	0.05	0.05	7.2	7.2	0.0	1.00
LQL1	25-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
LQL1	25-Apr-24	N-NO23	mg/L	0.02	0.02	<0.020	<0.020	0.0	1.00
LQL1	25-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LQL1	25-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
LQL1	25-Apr-24	P-D	mg/L	0.003	0.003	0.0039	0.0039	0.0	1.00
LQL1	25-Apr-24	P-T	mg/L	0.003	0.003	0.0052	0.0052	0.0	1.00
LQL1	25-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.0052	<0.0052	0.0	1.00
LQL1	25-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
LQL1	25-Apr-24	S-D	mg/L	3	3	5.6	5.6	0.0	1.00
LQL1		Se-D	_	0.0001	0.0001	<0.00010	<0.00010	0.0	
	25-Apr-24		mg/L			+			1.00
LQL1	25-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	Si-D	mg/L	0.1	0.1	2.54	2.54	0.0	1.00
LQL1	25-Apr-24	Si-T	mg/L	0.1	0.1	2.27	2.27	0.0	1.00
LQL1	25-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	SO4-D	mg/L	1	1	15	15	0.0	1.00
LQL1	25-Apr-24	Sr-D	mg/L	0.001	0.001	0.0479	0.0479	0.0	1.00
LQL1	25-Apr-24	Sr-T	mg/L	0.001	0.001	0.0427	0.0427	0.0	1.00
LQL1	25-Apr-24	S-T	mg/L	3	3	5	5	0.0	1.00
LQL1	25-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	TI-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LQL1	25-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
LQL1	25-Apr-24	Turb	NTU	0.1	0.1	0.4	0.4	0.0	1.00
LQL1	25-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
LQL1	25-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
LQL1	25-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
MQL1	24-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
MQL1	24-Apr-24	Al-D	mg/L	0.003	0.003	0.016	0.0153	4.5	1.05
MQL1	24-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
MQL1	24-Apr-24	Alk-T	mg/L	1	1	34	35	2.9	0.97
MQL1	24-Apr-24	Al-T	mg/L	0.003	0.003	0.0163	0.0151	7.6	1.08
MQL1	24-Apr-24	As-D	mg/L	0.003	0.003	0.0103	0.00131	18.2	1.20
MQL1	24-Apr-24 24-Apr-24	As-D As-T	mg/L	0.0001	0.0001	0.00012	0.0001	9.5	0.91

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
MQL1	24-Apr-24	Ba-D	mg/L	0.001	0.001	0.0015	0.0015	0.0	1.00
MQL1	24-Apr-24	Ba-T	mg/L	0.001	0.001	0.0014	0.0014	0.0	1.00
MQL1	24-Apr-24	B-D	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
MQL1	24-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
MQL1	24-Apr-24	Ca-D	mg/L	0.05	0.05	10.3	10.3	0.0	1.00
MQL1	24-Apr-24	Ca-T	mg/L	0.05	0.05	9.26	9.07	2.1	1.02
MQL1	24-Apr-24	Cd-D	mg/L	0.00001	0.00001	0.000016	<0.000010	46.2	1.60
MQL1	24-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
MQL1	24-Apr-24	Cl-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
MQL1	24-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL1	24-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL1	24-Apr-24	Cr-D	mg/L	0.0002	0.0002	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24 24-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24 24-Apr-24	Cu-D	mg/L	0.001	0.001	0.00059	0.00058	1.7	1.00
MQL1		Cu-D			0.0002			5.5	0.95
MQL1	24-Apr-24	DOC	mg/L	0.0005	0.0005	0.00053 2.6	0.00056 2.3	12.2	
	24-Apr-24		mg/L	0.5					1.13
MQL1	24-Apr-24	Fe-D	mg/L	0.005	0.005	0.0158	0.0165	4.3	0.96
MQL1	24-Apr-24	Fe-T	mg/L	0.01	0.01	0.022	0.021	4.7	1.05
MQL1	24-Apr-24	Hard-D	mg/L	0.5	0.5	31.1	30.9	0.6	1.01
MQL1	24-Apr-24	Hard-T	mg/L	0.5	0.5	27.8	27.1	2.6	1.03
MQL1	24-Apr-24	K-D	mg/L	0.05	0.05	0.189	0.178	6.0	1.06
MQL1	24-Apr-24	K-T	mg/L	0.05	0.05	0.16	0.167	4.3	0.96
MQL1	24-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
MQL1	24-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
MQL1	24-Apr-24	Mg-D	mg/L	0.05	0.05	1.28	1.24	3.2	1.03
MQL1	24-Apr-24	Mg-T	mg/L	0.05	0.05	1.13	1.09	3.6	1.04
MQL1	24-Apr-24	Mn-D	mg/L	0.001	0.001	0.0024	0.0018	28.6	1.33
MQL1	24-Apr-24	Mn-T	mg/L	0.001	0.001	0.0036	0.0034	5.7	1.06
MQL1	24-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	Na-D	mg/L	0.05	0.05	10.4	10.2	1.9	1.02
MQL1	24-Apr-24	Na-T	mg/L	0.05	0.05	9.33	8.84	5.4	1.06
MQL1	24-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	N-NO23	mg/L	0.02	0.02	<0.020	<0.020	0.0	1.00
MQL1	24-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL1	24-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL1	24-Apr-24	P-D	mg/L	0.003	0.003	<0.0030	<0.0030	0.0	1.00
MQL1	24-Apr-24	P-T	mg/L	0.003	0.003	<0.0030	0.01	107.7	0.30
MQL1	24-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
MQL1	24-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
MQL1	24-Apr-24	S-D	mg/L	3	3	6.8	6.8	0.0	1.00
MQL1	24-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Si-D	mg/L	0.1	0.1	1.99	1.95	2.0	1.02
MQL1	24-Apr-24	Si-T	mg/L	0.1	0.1	1.57	1.51	3.9	1.04
MQL1	24-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	SO4-D	mg/L	1	1	19	19	0.0	1.00
MQL1	24-Apr-24	Sr-D	mg/L	0.001	0.001	0.0494	0.0489	1.0	1.01
MQL1	24-Apr-24 24-Apr-24	Sr-T	mg/L	0.001	0.001	0.0434	0.0483	0.5	1.00
MQL1	24-Apr-24 24-Apr-24	S-T	mg/L	3	3	5.5	5.5	0.0	1.00
MQL1	24-Apr-24 24-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
MQL1	24-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	TI-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
MQL1	24-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
MQL1	24-Apr-24	Turb	NTU	0.1	0.1	0.2	0.5	85.7	0.40
MQL1	24-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Ag-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24 24-Apr-24		mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
MQL1	24-Apr-24 24-Apr-24	Ag-T Al-D	mg/L	0.00002	0.0002	0.016	0.016	0.0	1.00
MQL1	·	Alk-PP						0.0	
MQL1	24-Apr-24	Alk-PP	mg/L	1	1	<1.0 34	<1.0 34	0.0	1.00
	24-Apr-24		mg/L						1.00
MQL1	24-Apr-24	Al-T	mg/L	0.003	0.003	0.0163	0.0163 0.00012	0.0	1.00
MQL1	24-Apr-24	As-D	mg/L	0.0001	0.0001	0.00012			1.00
MQL1	24-Apr-24	As-T	mg/L	0.0001	0.0001	0.0001	0.0001	0.0	1.00
MQL1	24-Apr-24	Ba-D	mg/L	0.001	0.001	0.0015	0.0015	0.0	1.00
MQL1	24-Apr-24	Ba-T	mg/L	0.001	0.001	0.0014	0.0014	0.0	1.00
MQL1	24-Apr-24	B-D	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
MQL1	24-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
MQL1	24-Apr-24	Ca-D	mg/L	0.05	0.05	10.3	10.3	0.0	1.00
MQL1	24-Apr-24	Ca-T	mg/L	0.05	0.05	9.26	9.26	0.0	1.00
MQL1	24-Apr-24	Cd-D	mg/L	0.00001	0.00001	0.000016	0.000016	0.0	1.00
MQL1	24-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Cl-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
MQL1	24-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL1	24-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL1	24-Apr-24	Cr-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	Cu-D	mg/L	0.0002	0.0002	0.00059	0.00059	0.0	1.00
MQL1	24-Apr-24	Cu-T	mg/L	0.0005	0.0005	0.00053	0.00053	0.0	1.00
MQL1	24-Apr-24	DOC	mg/L	0.5	0.5	2.6	2.6	0.0	1.00
MQL1	24-Apr-24	Fe-D	mg/L	0.005	0.005	0.0158	0.0158	0.0	1.00
MQL1	24-Apr-24	Fe-T	mg/L	0.01	0.01	0.022	0.022	0.0	1.00
MQL1	24-Apr-24	Hard-D	mg/L	0.5	0.5	31.1	31.1	0.0	1.00
MQL1	24-Apr-24	Hard-T	mg/L	0.5	0.5	27.8	27.8	0.0	1.00
MQL1	24-Apr-24	K-D	mg/L	0.05	0.05	0.189	0.189	0.0	1.00
MQL1	24-Apr-24	K-T	mg/L	0.05	0.05	0.16	0.16	0.0	1.00
MQL1	24-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
MQL1	24-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
MQL1	24-Apr-24	Mg-D	mg/L	0.05	0.05	1.28	1.28	0.0	1.00
MQL1	24-Apr-24	Mg-T	mg/L	0.05	0.05	1.13	1.13	0.0	1.00
MQL1	24-Apr-24	Mn-D	mg/L	0.001	0.001	0.0024	0.0024	0.0	1.00
MQL1	24-Apr-24	Mn-T	mg/L	0.001	0.001	0.0036	0.0036	0.0	1.00
MQL1	24-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	Na-D	mg/L	0.05	0.05	10.4	10.4	0.0	1.00
MQL1	24-Apr-24	Na-T	mg/L	0.05	0.05	9.33	9.33	0.0	1.00
MQL1	24-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
MQL1	24-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL1	24-Apr-24	N-NO23	mg/L	0.02	0.02	<0.020	<0.020	0.0	1.00
MQL1	24-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL1	24-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL1	24-Apr-24	P-D	mg/L	0.003	0.003	<0.0030	<0.0030	0.0	1.00
MQL1	24-Apr-24	P-T	mg/L	0.003	0.003	<0.0030	<0.0030	0.0	1.00
MQL1	24-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
MQL1	24-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
MQL1	24-Apr-24	S-D	mg/L	3	3	6.8	6.8	0.0	1.00
MQL1	24-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Si-D	mg/L	0.1	0.1	1.99	1.99	0.0	1.00
MQL1	24-Apr-24	Si-T	mg/L	0.1	0.1	1.57	1.57	0.0	1.00
MQL1	24-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	SO4-D	mg/L	1	1	19	19	0.0	1.00
MQL1	24-Apr-24	Sr-D	mg/L	0.001	0.001	0.0494	0.0494	0.0	1.00
MQL1	24-Apr-24	Sr-T	mg/L	0.001	0.001	0.0431	0.0431	0.0	1.00
MQL1	24-Apr-24	S-T	mg/L	3	3	5.5	5.5	0.0	1.00
MQL1	24-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	TI-D	mg/L	0.00001	0.00001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24 24-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
MQL1	24-Apr-24 24-Apr-24	Turb	NTU	0.00001	0.00001	0.2	0.2	0.0	1.00
	·	U-D		0.0001			<0.00010	0.0	
MQL1	24-Apr-24	U-T	mg/L		0.0001 0.0001	<0.00010		0.0	1.00
MQL1	24-Apr-24		mg/L	0.0001		<0.00010	<0.00010		1.00
MQL1	24-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL1	24-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL1	24-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL4	1-May-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
MQL4	1-May-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
MQL4	1-May-24	Al-D	mg/L	0.003	0.003	0.0137	0.0138	0.7	0.99
MQL4	1-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
MQL4	1-May-24	Alk-T	mg/L	1	1	36	36	0.0	1.00
MQL4	1-May-24	Al-T	mg/L	0.003	0.003	0.0160	0.0148	7.8	1.08
MQL4	1-May-24	As-D	mg/L	0.0001	0.0001	<0.00010	0.00011	9.5	0.91
MQL4	1-May-24	As-T	mg/L	0.0001	0.0001	0.00011	0.00011	0.0	1.00
MQL4	1-May-24	Ba-D	mg/L	0.001	0.001	0.0014	0.0014	0.0	1.00
MQL4	1-May-24	Ba-T	mg/L	0.001	0.001	0.0015	0.0014	6.9	1.07
MQL4	1-May-24	B-D	mg/L	0.05	0.05	0.051	0.052	1.9	0.98
MQL4	1-May-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL4	1-May-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL4	1-May-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
MQL4	1-May-24	Ca-D	mg/L	0.05	0.05	10.6	10.5	0.9	1.01
MQL4	1-May-24	Ca-T	mg/L	0.05	0.05	9.54	9.31	2.4	1.02
MQL4	1-May-24	Cd-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
MQL4	1-May-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
MQL4	1-May-24	CI-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
MQL4	1-May-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL4	1-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL4	1-May-24	Cr-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL4	1-May-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Sta Codo 1	Data	Daram Codo	Units	Lab MDL 1	Lab MDL 2	Posult 1	Posult 2	Pol % Diff	Patio
Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
MQL4	1-May-24	Cu-D	mg/L	0.0002	0.0002	0.00052	0.00052	0.0	1.00
MQL4	1-May-24	Cu-T	mg/L	0.0005	0.0005	0.00054	0.00052	3.8	1.04
MQL4	1-May-24	DOC	mg/L	0.5	0.5	2.5	2.2	12.8	1.14
MQL4	1-May-24	Fe-D	mg/L	0.005	0.005	0.0187	0.0146	24.6	1.28
MQL4	1-May-24	Fe-T	mg/L	0.01	0.01	0.025	0.026	3.9	0.96
MQL4	1-May-24	Hard-D	mg/L	0.5	0.5	31.9	31.7	0.6	1.01
MQL4	1-May-24	Hard-T	mg/L	0.5	0.5	28.9	28.1	2.8	1.03
MQL4	1-May-24	K-D	mg/L	0.05	0.05	0.187	0.188	0.5	0.99
MQL4	1-May-24	K-T	mg/L	0.05	0.05	0.180	0.172	4.5	1.05
MQL4	1-May-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
MQL4	1-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
MQL4	1-May-24	Mg-D	mg/L	0.05	0.05	1.35	1.35	0.0	1.00
MQL4	1-May-24	Mg-T	mg/L	0.05	0.05	1.23	1.17	5.0	1.05
MQL4	1-May-24	Mn-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL4	1-May-24	Mn-T	mg/L	0.001	0.001	0.0040	0.0039	2.5	1.03
MQL4	1-May-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL4	1-May-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL4	1-May-24	Na-D	mg/L	0.05	0.05	11.1	11.3	1.8	0.98
MQL4	1-May-24	Na-T	mg/L	0.05	0.05	10.2	9.84	3.6	1.04
MQL4	1-May-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL4	1-May-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
MQL4	1-May-24	N-NO23	mg/L	0.02	0.02	<0.020	<0.020	0.0	1.00
MQL4	1-May-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL4	1-May-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
MQL4	1-May-24	P-D	mg/L	0.003	0.003	<0.0030	<0.0030	0.0	1.00
MQL4	1-May-24	P-T	mg/L	0.003	0.003	0.0039	<0.0030	26.1	1.30
MQL4	1-May-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
MQL4	1-May-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
MQL4	1-May-24	S-D	mg/L	3	3	6.8	6.8	0.0	1.00
MQL4	1-May-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL4	1-May-24	Se-D		0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL4		Si-D	mg/L	0.0001	0.0001	1.76	1.80	2.2	0.98
	1-May-24		mg/L	0.1	0.1	1.74	1.69	2.2	
MQL4	1-May-24	Si-T	mg/L	0.005		I			1.03
MQL4	1-May-24	Sn-D	mg/L		0.005	<0.0050	<0.0050	0.0	1.00
MQL4	1-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL4	1-May-24	SO4-D	mg/L	1	1	20	20	0.0	1.00
MQL4	1-May-24	Sr-D	mg/L	0.001	0.001	0.0476	0.0482	1.3	0.99
MQL4	1-May-24	Sr-T	mg/L	0.001	0.001	0.0455	0.0442	2.9	1.03
MQL4	1-May-24	S-T	mg/L	3	3	7.2	6.1	16.5	1.18
MQL4	1-May-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL4	1-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL4	1-May-24	TI-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
MQL4	1-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
MQL4	1-May-24	Turb	NTU	0.1	0.1	0.26	0.25	3.9	1.04
MQL4	1-May-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL4	1-May-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL4	1-May-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL4	1-May-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL4	1-May-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL4	1-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
MQL4	1-May-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
MQL4	1-May-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
NNL1	10-Apr-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
NNL1	10-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
NNL1	10-Apr-24	Al-D	mg/L	0.003	0.003	0.0393	0.0406	3.3	0.97

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
NNL1	10-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
NNL1	10-Apr-24	Alk-T	mg/L	1	1	11	11	0.0	1.00
NNL1	10-Apr-24	Al-T	mg/L	0.003	0.003	0.0426	0.0417	2.1	1.02
NNL1	10-Apr-24	As-D	mg/L	0.0001	0.0001	0.00021	0.00021	0.0	1.00
NNL1	10-Apr-24	As-T	mg/L	0.0001	0.0001	0.00021	0.00020	4.9	1.05
NNL1	10-Apr-24	Ba-D	mg/L	0.001	0.001	0.0010	0.0010	0.0	1.00
NNL1	10-Apr-24	Ba-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
NNL1	10-Apr-24	B-D	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
NNL1	10-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
NNL1	10-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
NNL1	10-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
NNL1	10-Apr-24	Ca-D	mg/L	0.05	0.05	3.54	3.52	0.6	1.01
NNL1	10-Apr-24	Ca-T	mg/L	0.05	0.05	3.17	3.09	2.6	1.03
NNL1	10-Apr-24	Cd-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
NNL1	10-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
NNL1	10-Apr-24	Cl-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
NNL1	10-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
NNL1	10-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
NNL1	10-Apr-24	Cr-D	mg/L	0.0002	0.0002	<0.0010	<0.0010	0.0	1.00
NNL1	10-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
NNL1	10-Apr-24	Cu-D	mg/L	0.001	0.001	0.0010	0.00010	2.1	0.98
		Cu-D						3.9	
NNL1	10-Apr-24		mg/L	0.0005	0.0005 0.5	<0.00050 3.5	0.00052		0.96 0.88
NNL1	10-Apr-24	DOC	mg/L	0.5			4.0	13.3	
NNL1	10-Apr-24	Fe-D	mg/L	0.005	0.005	0.0336	0.0373	10.4	0.90
NNL1	10-Apr-24	Fe-T	mg/L	0.01	0.01	0.047	0.045	4.3	1.04
NNL1	10-Apr-24	Hard-D	mg/L	0.5	0.5	11.9	11.8	0.8	1.01
NNL1	10-Apr-24	Hard-T	mg/L	0.5	0.5	10.8	10.5	2.8	1.03
NNL1	10-Apr-24	K-D	mg/L	0.05	0.05	0.051	0.054	5.7	0.94
NNL1	10-Apr-24	K-T	mg/L	0.05	0.05	0.054	0.053	1.9	1.02
NNL1	10-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
NNL1	10-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
NNL1	10-Apr-24	Mg-D	mg/L	0.05	0.05	0.751	0.739	1.6	1.02
NNL1	10-Apr-24	Mg-T	mg/L	0.05	0.05	0.703	0.682	3.0	1.03
NNL1	10-Apr-24	Mn-D	mg/L	0.001	0.001	0.0031	0.0031	0.0	1.00
NNL1	10-Apr-24	Mn-T	mg/L	0.001	0.001	0.0033	0.0031	6.2	1.06
NNL1	10-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
NNL1	10-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
NNL1	10-Apr-24	Na-D	mg/L	0.05	0.05	1.03	1.04	1.0	0.99
NNL1	10-Apr-24	Na-T	mg/L	0.05	0.05	0.953	0.900	5.7	1.06
NNL1	10-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
NNL1	10-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
NNL1	10-Apr-24	N-NO23	mg/L	0.02	0.02	<0.020	<0.020	0.0	1.00
NNL1	10-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
NNL1	10-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
NNL1	10-Apr-24	P-T	mg/L	0.003	0.003	0.0046	0.0037	21.7	1.24
NNL1	10-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
NNL1	10-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
NNL1	10-Apr-24	S-D	mg/L	3	3	<3.0	<3.0	0.0	1.00
NNL1	10-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
NNL1	10-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
NNL1	10-Apr-24	Si-D	mg/L	0.1	0.1	3.16	3.15	0.3	1.00
NNL1	10-Apr-24	Si-T	mg/L	0.1	0.1	3.15	3.06	2.9	1.03
NNL1	10-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
NNL1	10-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
NNL1	10-Apr-24	SO4-D	mg/L	1	1	<1.0	<1.0	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

				T		I		T	
Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
NNL1	10-Apr-24	Sr-D	mg/L	0.001	0.001	0.0098	0.0100	2.0	0.98
NNL1	10-Apr-24	Sr-T	mg/L	0.001	0.001	0.0095	0.0091	4.3	1.04
NNL1	10-Apr-24	S-T	mg/L	3	3	<3.0	<3.0	0.0	1.00
NNL1	10-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
NNL1	10-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
NNL1	10-Apr-24	TI-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
NNL1	10-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
NNL1	10-Apr-24	Turb	NTU	0.1	0.1	0.31	0.32	3.2	0.97
NNL1	10-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
NNL1	10-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
NNL1	10-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
NNL1	10-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
NNL1	10-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
NNL1	10-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
NNL1	10-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
NNL1	10-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
PDSR	6-May-24	Ag-D	mg/L	0.00002	0.00002	<0.00020	<0.00020	0.0	1.00
PDSR	6-May-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
PDSR	6-May-24	Al-D	mg/L	0.003	0.003	0.0073	0.0065	11.6	1.12
PDSR	6-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
PDSR	6-May-24	Alk-T	mg/L	1	1	190	190	0.0	1.00
PDSR	6-May-24	Al-T	mg/L	0.003	0.003	0.0074	0.0073	1.4	1.01
PDSR	6-May-24	As-D	mg/L	0.0001	0.0001	<0.00010	<0.0073	0.0	1.00
PDSR	6-May-24	As-D As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
PDSR	6-May-24		_	0.0001					1.00
		Ba-D	mg/L		0.001	0.0212	0.0212	0.0	
PDSR	6-May-24	Ba-T	mg/L	0.001	0.001	0.0185	0.0186	0.5	0.99
PDSR	6-May-24	B-D	mg/L	0.05	0.05	0.303	0.290	4.4	1.04
PDSR	6-May-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
PDSR	6-May-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
PDSR	6-May-24	B-T	mg/L	0.05	0.05	0.268	0.252	6.2	1.06
PDSR	6-May-24	Ca-D	mg/L	0.05	0.05	226	221	2.2	1.02
PDSR	6-May-24	Ca-T	mg/L	0.05	0.05	202	202	0.0	1.00
PDSR	6-May-24	Cd-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
PDSR	6-May-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
PDSR	6-May-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
PDSR	6-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
PDSR	6-May-24	Cr-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
PDSR	6-May-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
PDSR	6-May-24	Cu-D	mg/L	0.0002	0.0002	0.00037	0.00037	0.0	1.00
PDSR	6-May-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
PDSR	6-May-24	Fe-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
PDSR	6-May-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010	0.0	1.00
PDSR	6-May-24	Hard-D	mg/L	0.5	0.5	721	703	2.5	1.03
PDSR	6-May-24	Hard-T	mg/L	0.5	0.5	648	649	0.2	1.00
PDSR	6-May-24	K-D	mg/L	0.05	0.05	1.51	1.49	1.3	1.01
PDSR	6-May-24	K-T	mg/L	0.05	0.05	1.38	1.34	2.9	1.03
PDSR	6-May-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
PDSR	6-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
PDSR	6-May-24	Mg-D	mg/L	0.05	0.05	38.1	37.0	2.9	1.03
PDSR	6-May-24	Mg-T	mg/L	0.05	0.05	34.8	35.2	1.1	0.99
PDSR	6-May-24	Mn-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
PDSR	6-May-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
PDSR	6-May-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
PDSR	6-May-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
PDSR	6-May-24	Na-D	mg/L	0.05	0.05	40.9	41.3	1.0	0.99

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
PDSR	6-May-24	Na-T	mg/L	0.05	0.05	37.7	37.7	0.0	1.00
PDSR	6-May-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
PDSR	6-May-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
PDSR	6-May-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
PDSR	6-May-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
PDSR	6-May-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
PDSR	6-May-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
PDSR	6-May-24	S-D	mg/L	3	3	213	213	0.0	1.00
PDSR	6-May-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
PDSR	6-May-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
PDSR	6-May-24	Si-D	mg/L	0.0001	0.0001	3.71	3.63	2.2	1.02
PDSR	6-May-24	Si-T	mg/L	0.1	0.1	3.17	3.24	2.2	0.98
PDSR	6-May-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
PDSR	6-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
	-		_	5					
PDSR	6-May-24	SO4-D	mg/L		5	620	620	0.0	1.00
PDSR	6-May-24	Sr-D	mg/L	0.001	0.001	1.39	1.36	2.2	1.02
PDSR	6-May-24	Sr-T	mg/L	0.001	0.001	1.23	1.25	1.6	0.98
PDSR	6-May-24	S-T	mg/L	3	3	195	200	2.5	0.98
PDSR	6-May-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
PDSR	6-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
PDSR	6-May-24	TI-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
PDSR	6-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
PDSR	6-May-24	TSS	mg/L	1	1	1.2	1.6	28.6	0.75
PDSR	6-May-24	U-D	mg/L	0.0001	0.0001	0.00044	0.00044	0.0	1.00
PDSR	6-May-24	U-T	mg/L	0.0001	0.0001	0.00038	0.00038	0.0	1.00
PDSR	6-May-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
PDSR	6-May-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
PDSR	6-May-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
PDSR	6-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
PDSR	6-May-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
PDSR	6-May-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QRDS1	15-Apr-24	Ag-D	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
QRDS1	15-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020	0.0	1.00
QRDS1	15-Apr-24	Al-D	mg/L	0.003	0.003	0.0146	0.0148	1.4	0.99
QRDS1	15-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
QRDS1	15-Apr-24	Alk-T	mg/L	1	1	38	38	0.0	1.00
QRDS1	15-Apr-24	Al-T	mg/L	0.003	0.003	0.0200	0.0185	7.8	1.08
QRDS1	15-Apr-24	As-D	mg/L	0.0001	0.0001	0.00049	0.00048	2.1	1.02
QRDS1	15-Apr-24	As-T	mg/L	0.0001	0.0001	0.00054	0.00056	3.6	0.96
QRDS1	15-Apr-24	Ba-D	mg/L	0.001	0.001	0.0023	0.0024	4.3	0.96
QRDS1	15-Apr-24	Ba-T	mg/L	0.001	0.001	0.0020	0.0022	9.5	0.91
QRDS1	15-Apr-24	B-D	mg/L	0.05	0.05	0.051	<0.050	2.0	1.02
QRDS1	15-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.0010	<0.00010	0.0	1.00
QRDS1	15-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QRDS1	15-Apr-24 15-Apr-24	B-T	mg/L	0.0001	0.0001	<0.050	<0.050	0.0	1.00
QRDS1	15-Apr-24 15-Apr-24	Ca-D	mg/L	0.05	0.05	11.6	11.1	4.4	1.05
QRDS1	15-Apr-24 15-Apr-24	Ca-D	mg/L	0.05	0.05	9.39	10.2	8.3	0.92
QRDS1	1	Cd-D		0.0001	0.0001	<0.000010	<0.00010	0.0	1.00
	15-Apr-24		mg/L						
QRDS1	15-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
QRDS1	15-Apr-24	Cl-D	mg/L	0.0003	0.0003	<1.0	<1.0	0.0	1.00
QRDS1	15-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
QRDS1	15-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
QRDS1	15-Apr-24	Cr-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
QRDS1	15-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
QRDS1	15-Apr-24	Cu-D	mg/L	0.0002	0.0002	0.00052	0.00055	5.6	0.95

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
QRDS1	15-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	0.00052	3.9	0.96
QRDS1	15-Apr-24	DOC	mg/L	0.5	0.5	2.3	2.5	8.3	0.92
QRDS1	15-Apr-24	Fe-D	mg/L	0.005	0.005	0.0213	0.0214	0.5	1.00
QRDS1	15-Apr-24	Fe-T	mg/L	0.01	0.01	0.038	0.032	17.1	1.19
QRDS1	15-Apr-24	Hard-D	mg/L	0.5	0.5	35.1	33.8	3.8	1.04
QRDS1	15-Apr-24	Hard-T	mg/L	0.5	0.5	28.7	31.4	9.0	0.91
QRDS1	15-Apr-24	K-D	mg/L	0.05	0.05	0.221	0.220	0.5	1.00
QRDS1	15-Apr-24	K-D K-T	mg/L	0.05	0.05	0.195	0.216	10.2	0.90
QRDS1	15-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
QRDS1	15-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
QRDS1	15-Apr-24	Mg-D	mg/L	0.002	0.002	1.47	1.46	0.7	1.01
QRDS1	15-Apr-24		mg/L	0.05	0.05	1.47	1.42	11.2	0.89
QRDS1	15-Apr-24	Mg-T Mn-D	mg/L	0.001	0.001	0.0016	0.0017	6.1	0.89
		Mn-T	mg/L			-			
QRDS1	15-Apr-24		-	0.001	0.001	0.0032	0.0030	6.5	1.07
QRDS1	15-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
QRDS1	15-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
QRDS1	15-Apr-24	Na-D	mg/L	0.05	0.05	12.6	12.5	0.8	1.01
QRDS1	15-Apr-24	Na-T	mg/L	0.05	0.05	10.7	11.6	8.1	0.92
QRDS1	15-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
QRDS1	15-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
QRDS1	15-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
QRDS1	15-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
QRDS1	15-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
QRDS1	15-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
QRDS1	15-Apr-24	S-D	mg/L	3	3	8.5	8.3	2.4	1.02
QRDS1	15-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QRDS1	15-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QRDS1	15-Apr-24	Si-D	mg/L	0.1	0.1	2.13	2.03	4.8	1.05
QRDS1	15-Apr-24	Si-T	mg/L	0.1	0.1	1.80	1.96	8.5	0.92
QRDS1	15-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QRDS1	15-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QRDS1	15-Apr-24	SO4-D	mg/L	1	1	25	25	0.0	1.00
QRDS1	15-Apr-24	Sr-D	mg/L	0.001	0.001	0.0570	0.0569	0.2	1.00
QRDS1	15-Apr-24	Sr-T	mg/L	0.001	0.001	0.0482	0.0531	9.7	0.91
QRDS1	15-Apr-24	S-T	mg/L	3	3	7.3	7.9	7.9	0.92
QRDS1	15-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QRDS1	15-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QRDS1	15-Apr-24	TI-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
QRDS1	15-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
QRDS1	15-Apr-24	TSS	mg/L	1	1	<1.0	<1.0	0.0	1.00
QRDS1	15-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QRDS1	15-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QRDS1	15-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QRDS1	15-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QRDS1	15-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QRDS1	15-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QRDS1	15-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QRDS1	15-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QU1410	14-May-24	Ag-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
QU1410	14-May-24	Al-D	mg/L	0.015	0.015	<0.015	<0.015	0.0	1.00
QU1410	14-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
QU1410	14-May-24	Alk-T	mg/L	1	1	330	330	0.0	1.00
QU1410	14-May-24	As-D	mg/L	0.0005	0.0005	0.0952	0.0961	0.9	0.99
QU1410	14-May-24	Ba-D	mg/L	0.005	0.005	0.0139	0.0141	1.4	0.99
QU1410	14-May-24	B-D	mg/L	0.25	0.25	1.10	1.08	1.8	1.02

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

QUI410	Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
QUISTON 14-May-24 C-D mg/L 0.05 0.05 5.19 5.15 0.8 0.00 0	QU1410	14-May-24	Be-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
QUI4101 14-May-24 Cd-D mg/L 0.00005 0.00005 0.000050 0.0	QU1410	14-May-24	Br-D	mg/L	0.1	0.1	<0.10	<0.10	0.0	1.00
QUI4101 14-May-24 Cd-D mg/L 0.00005 0.00005 0.000050 0.0	QU1410	14-May-24	Ca-D	mg/L	0.25	0.25	519	515	0.8	1.01
QUIA10 14-May-24 C-D mg/L 0.001 0.001 0.0010 0.0050 0.00	QU1410	14-May-24	Cd-D	mg/L	0.00005	0.00005	<0.000050	<0.000050	0.0	1.00
QUIA10 14-May-24 C-D mg/L 0.001 0.001 0.0010 0.0050 0.00	QU1410	14-May-24	CI-D	mg/L	1	1	3.5	3.7	5.6	0.95
QUI410 14-May-24 Cr-D mg/L 0.005 0.005 0.0050 0.00 0.0 0.001	QU1410		Co-D		0.001	0.001	<0.0010	<0.0010	0.0	1.00
QUI410	QU1410	14-May-24	Cr-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QU1410	QU1410	14-May-24	Cu-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
QUIA10	QU1410		DOC	_	0.5	0.5	1.7	1.5	12.5	1.13
QUI410	QU1410		F-D		0.05	0.05	0.14	0.15	6.9	0.93
QU1410	QU1410		Fe-D		0.025	0.025	2.28	2.26	0.9	1.01
QUI410	QU1410		H2S		0.002	0.002	<0.0020	<0.0020	0.0	1.00
QUI410			Hard-D	mg/L		0.5	2060	2050	0.5	1.00
QUI410	QU1410				0.25	0.25	7.33	7.41		0.99
QU1410	QU1410		Li-D	-		0.01		0.143	1.4	1.01
QU1410	QU1410						-			0.99
QU1410				-						0.98
QU1410										1.00
QU1410										1.00
QU1410				_						0.91
QU1410										1.00
QUI410				_			<0.0010			1.00
QU1410				_						1.00
QUI410										1.00
QU1410 14-May-24 S-D mg/L 15 15 632 641 1.4 0.9 QU1410 14-May-24 Se-D mg/L 0.0005 0.0005 <0.00050										1.00
QUI410				_						0.99
QU1410 14-May-24 Si-D mg/L 0.5 0.5 3.37 3.27 3.0 1.0 QU1410 14-May-24 Sn-D mg/L 0.025 0.025 <0.025										1.00
QU1410 14-May-24 Sn-D mg/L 0.025 0.025 <0.025 <0.025 0.025 0.0 1.0 QU1410 14-May-24 SO4-D mg/L 25 25 1800 1800 0.0 1.0 QU1410 14-May-24 Ti-D mg/L 0.005 0.005 4.52 4.59 1.5 0.9 QU1410 14-May-24 Ti-D mg/L 0.025 0.025 <0.025				_						1.03
QU1410 14-May-24 SO4-D mg/L 25 25 1800 1800 0.0 1.0 QU1410 14-May-24 Sr-D mg/L 0.005 0.005 4.52 4.59 1.5 0.9 QU1410 14-May-24 Ti-D mg/L 0.025 0.025 <0.025										1.00
QU1410 14-May-24 Sr-D mg/L 0.005 0.005 4.52 4.59 1.5 0.9 QU1410 14-May-24 Ti-D mg/L 0.025 0.025 <0.025										1.00
QU1410 14-May-24 Ti-D mg/L 0.025 0.025 <0.025 <0.025 0.0 1.0 QU1410 14-May-24 TI-D mg/L 0.00005 0.00005 <0.000050				-						0.98
QU1410 14-May-24 TI-D mg/L 0.00005 0.000050 <0.000050 <0.000050 0.0 1.0 QU1410 14-May-24 Turb NTU 0.1 0.1 22 29 27.5 0.7 QU1410 14-May-24 U-D mg/L 0.0005 0.0005 0.00083 2.4 1.0 QU1410 14-May-24 V-D mg/L 0.025 0.025 <0.025										1.00
QU1410 14-May-24 Turb NTU 0.1 0.1 22 29 27.5 0.7 QU1410 14-May-24 U-D mg/L 0.0005 0.0005 0.00085 0.00083 2.4 1.0 QU1410 14-May-24 V-D mg/L 0.025 0.025 <0.025										1.00
QU1410 14-May-24 U-D mg/L 0.0005 0.0005 0.00085 0.00083 2.4 1.0 QU1410 14-May-24 V-D mg/L 0.025 0.025 <0.025				-						0.76
QU1410 14-May-24 V-D mg/L 0.025 0.025 <0.025 <0.025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.00010 0.00010 0.00 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0									1	1.02
QU1410 14-May-24 Zn-D mg/L 0.025 0.025 <0.025 <0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.0050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00010 0.00010 0.00010 0.00010 0.00010 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.0001 0.0015 0.00	-						-			1.00
QU1410 14-May-24 Zr-D mg/L 0.0005 0.0005 <0.00050 <0.00050 0.0 1.0 QU1410 14-May-24 Ag-D mg/L 0.0001 0.0001 <0.00010										1.00
QU1410 14-May-24 Ag-D mg/L 0.0001 0.0001 <0.00010 <0.00010 0.0 1.0 QU1410 14-May-24 Al-D mg/L 0.015 0.015 <0.015				,						1.00
QU1410 14-May-24 Al-D mg/L 0.015 0.015 <0.015 <0.015 0.0 1.0 QU1410 14-May-24 Alk-PP mg/L 1 1 <1.0				_						1.00
QU1410 14-May-24 Alk-PP mg/L 1 1 <1.0 <1.0 0.0 1.0 QU1410 14-May-24 Alk-T mg/L 1 1 330 330 0.0 1.0 QU1410 14-May-24 As-D mg/L 0.0005 0.0005 0.0952 0.0952 0.0 1.0 QU1410 14-May-24 Ba-D mg/L 0.005 0.005 0.0139 0.0139 0.0 1.0 QU1410 14-May-24 B-D mg/L 0.25 0.25 1.10 1.10 0.0 1.0 QU1410 14-May-24 Be-D mg/L 0.0005 0.0005 <0.00050							t			1.00
QU1410 14-May-24 Alk-T mg/L 1 1 330 330 0.0 1.0 QU1410 14-May-24 As-D mg/L 0.0005 0.0005 0.0952 0.0952 0.0 1.0 QU1410 14-May-24 Ba-D mg/L 0.005 0.005 0.0139 0.0139 0.0 1.0 QU1410 14-May-24 B-D mg/L 0.25 0.25 1.10 1.10 0.0 1.0 QU1410 14-May-24 Be-D mg/L 0.0005 0.0005 <0.00050							-			1.00
QU1410 14-May-24 As-D mg/L 0.0005 0.0005 0.0952 0.0952 0.0 1.0 QU1410 14-May-24 Ba-D mg/L 0.005 0.005 0.0139 0.0139 0.0 1.0 QU1410 14-May-24 B-D mg/L 0.25 0.25 1.10 1.10 0.0 1.0 QU1410 14-May-24 Be-D mg/L 0.0005 0.0005 <0.00050										1.00
QU1410 14-May-24 Ba-D mg/L 0.005 0.005 0.0139 0.0139 0.0 1.0 QU1410 14-May-24 B-D mg/L 0.25 0.25 1.10 1.10 0.0 1.0 QU1410 14-May-24 Be-D mg/L 0.0005 0.0005 <0.00050							ł			1.00
QU1410 14-May-24 B-D mg/L 0.25 0.25 1.10 1.10 0.0 1.0 QU1410 14-May-24 Be-D mg/L 0.0005 0.0005 <0.00050							+			1.00
QU1410 14-May-24 Be-D mg/L 0.0005 0.0005 <0.00050 <0.00050 <0.00050 0.0 1.0 QU1410 14-May-24 Br-D mg/L 0.1 0.1 <0.10				_						1.00
QU1410 14-May-24 Br-D mg/L 0.1 0.1 <0.10 <0.10 0.0 1.0 QU1410 14-May-24 Ca-D mg/L 0.25 0.25 519 519 0.0 1.0 QU1410 14-May-24 Cd-D mg/L 0.00005 0.00005 <0.000050							ł			1.00
QU1410 14-May-24 Ca-D mg/L 0.25 0.25 519 519 0.0 1.0 QU1410 14-May-24 Cd-D mg/L 0.00005 0.00005 <0.000050										1.00
QU1410 14-May-24 Cd-D mg/L 0.00005 0.00005 <0.000050 <0.000050 0.0 1.0 QU1410 14-May-24 Cl-D mg/L 1 1 3.5 3.5 0.0 1.0 QU1410 14-May-24 Co-D mg/L 0.001 0.001 <0.0010		-								1.00
QU1410 14-May-24 Cl-D mg/L 1 1 3.5 3.5 0.0 1.0 QU1410 14-May-24 Co-D mg/L 0.001 0.001 <0.0010										1.00
QU1410 14-May-24 Co-D mg/L 0.001 0.001 <0.0010 <0.0010 0.0 1.0 QU1410 14-May-24 Cr-D mg/L 0.005 0.005 <0.0050				_						1.00
QU1410 14-May-24 Cr-D mg/L 0.005 0.005 <0.0050 <0.0050 0.0 1.0 QU1410 14-May-24 Cu-D mg/L 0.001 0.001 <0.0010										1.00
QU1410 14-May-24 Cu-D mg/L 0.001 0.001 <0.0010 <0.0010 0.0 1.0							-			1.00
										1.00
QQL:120 1: Huy 27 DQC Hig/E 0.0 0.0 1.7 1.7 1.7 0.0 1.0										1.00
		-								1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
QU1410	14-May-24	Fe-D	mg/L	0.025	0.025	2.28	2.28	0.0	1.00
QU1410	14-May-24	H2S	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
QU1410	14-May-24	Hard-D	mg/L	0.5	0.5	2060	2060	0.0	1.00
QU1410	14-May-24	K-D	mg/L	0.25	0.25	7.33	7.33	0.0	1.00
QU1410	14-May-24	Li-D	mg/L	0.01	0.01	0.145	0.145	0.0	1.00
QU1410	14-May-24	Mg-D	mg/L	0.25	0.25	185	185	0.0	1.00
QU1410	14-May-24	Mn-D	mg/L	0.005	0.005	1.40	1.40	0.0	1.00
QU1410	14-May-24	Mo-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QU1410	14-May-24	Na-D	mg/L	0.25	0.25	51.6	51.6	0.0	1.00
QU1410	14-May-24	N-D	mg/L	0.02	0.02	0.227	0.227	0.0	1.00
QU1410	14-May-24	Ni-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
QU1410	14-May-24	Pb-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
QU1410	14-May-24	P-D	mg/L	0.003	0.003	0.013	0.013	0.0	1.00
QU1410	14-May-24	S2-T	mg/L	0.0018	0.0018	<0.0018	<0.0018	0.0	1.00
QU1410	14-May-24	Sb-D	mg/L	0.0025	0.0025	<0.0025	<0.0025	0.0	1.00
QU1410	14-May-24	S-D	mg/L	15	15	632	632	0.0	1.00
QU1410	14-May-24	Se-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
QU1410	14-May-24	Si-D	mg/L	0.5	0.5	3.37	3.37	0.0	1.00
QU1410	14-May-24	Sn-D	mg/L	0.025	0.025	<0.025	<0.025	0.0	1.00
QU1410	14-May-24	SO4-D	mg/L	25	25	1800	1800	0.0	1.00
QU1410	14-May-24	Sr-D	mg/L	0.005	0.005	4.52	4.52	0.0	1.00
QU1410	14-May-24	Ti-D	mg/L	0.025	0.025	<0.025	<0.025	0.0	1.00
QU1410	14-May-24	TI-D	mg/L	0.00005	0.00005	<0.000050	<0.000050	0.0	1.00
QU1410	14-May-24	Turb	NTU	0.1	0.1	22	22	0.0	1.00
QU1410	14-May-24	U-D	mg/L	0.0005	0.0005	0.00085	0.00085	0.0	1.00
QU1410	14-May-24	V-D	mg/L	0.025	0.025	<0.025	<0.025	0.0	1.00
QU1410	14-May-24	Zn-D	mg/L	0.025	0.025	<0.025	<0.025	0.0	1.00
QU1410	14-May-24	Zr-D	mg/L	0.0005	0.0005	<0.0050	<0.0050	0.0	1.00
SPC	3-Jun-24	Alk-PP	mg/L	1	1	<1.0	<1.0	0.0	1.00
SPC	3-Jun-24	Alk-T	mg/L	1	1	77	78	1.3	0.99
SPC	3-Jun-24	SO4-D	mg/L	5	5	250	260	3.9	0.96
SPC	3-Jun-24	TSS	mg/L	1	1	<1.0	<1.0	0.0	1.00
SPCEFF	29-Apr-24	H2S	mg/L	0.002	0.002	0.057	0.073	24.6	0.78
SPCEFF	29-Apr-24	S2-T	mg/L	0.002	0.002	0.053	0.069	26.2	0.77
SPCEFF	29-Apr-24	SO4-D	mg/L	5	5	540	540	0.0	1.00
SPCEFF	17-Jun-24	H2S	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
SPCEFF	17-Jun-24	\$2-T	mg/L	0.0018	0.002	<0.0028	<0.0018	0.0	1.00
SPCEFF	17 Jun 24 17-Jun-24	SO4-D	mg/L	5	5	450	470	4.3	0.96
SPCEFF	17-Jun-24 17-Jun-24	H2S	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
SPCEFF	17-Jun-24 17-Jun-24	S2-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
SPCEFF	17-Jun-24 17-Jun-24	SO4-D	_	5		450	450	0.0	1.00
SPCEFF	17-Jun-24 10-Jun-24	SO4-D	mg/L mg/L	5	5	400	450	0.0	1.00
SPD SPD	10-Jun-24 10-Jun-24	TSS	mg/L	1	1	<1.0	1.6	46.2	0.62
SPD	10-Jun-24 10-Jun-24	SO4-D	mg/L	5	5	400	400	0.0	1.00
SPD SPD	10-Jun-24 10-Jun-24	TSS	mg/L	1	1	<1.0	<1.0	0.0	1.00
WA			mg/L	0.00002		<0.000020	<0.000020		
WA WA	3-Apr-24	Ag-D			0.00002 0.00002	<0.000020	<0.000020	0.0	1.00
WA WA	3-Apr-24	Ag-T Al-D	mg/L	0.00002	0.00002	0.0200	0.0201	0.0	1.00
WA	3-Apr-24	Alk-PP	mg/L			<1.0	<1.0	0.5	1.00
	3-Apr-24		mg/L	1	1				
WA	3-Apr-24	Alk-T	mg/L	1 0.002		18	18	0.0	1.00
WA	3-Apr-24	Al-T	mg/L	0.003	0.003	0.0341	0.0322	5.7	1.06
WA	3-Apr-24	As-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
WA	3-Apr-24	As-T	mg/L	0.0001	0.0001	0.00010	0.00010	0.0	1.00
WA	3-Apr-24	Ba-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
WA	3-Apr-24	Ba-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
WA	3-Apr-24	B-D	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
WA	3-Apr-24	Be-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
WA	3-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
WA	3-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050	0.0	1.00
WA	3-Apr-24	Ca-D	mg/L	0.05	0.05	6.32	6.31	0.2	1.00
WA	3-Apr-24	Ca-T	mg/L	0.05	0.05	5.88	5.82	1.0	1.01
WA	3-Apr-24	Cd-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
WA	3-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
WA	3-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0	0.0	1.00
WA	3-Apr-24	Co-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
WA	3-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
WA	3-Apr-24	Cr-D	mg/L	0.0002	0.0002	<0.0010	<0.0010	0.0	1.00
WA	3-Apr-24 3-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
WA			_			0.00060			
WA	3-Apr-24 3-Apr-24	Cu-D	mg/L	0.0002	0.0002	0.00060	0.00061	1.7	0.98
		Cu-T	mg/L	0.0005	0.0005		0.00066	7.3	1.08
WA	3-Apr-24	DOC	mg/L	0.5	0.5	2.5	2.3	8.3	1.09
WA	3-Apr-24	Fe-D	mg/L	0.005	0.005	0.0093	0.0087	6.7	1.07
WA	3-Apr-24	Fe-T	mg/L	0.01	0.01	0.022	0.022	0.0	1.00
WA	3-Apr-24	Hard-D	mg/L	0.5	0.5	18.6	18.6	0.0	1.00
WA	3-Apr-24	Hard-T	mg/L	0.5	0.5	17.5	17.2	1.7	1.02
WA	3-Apr-24	K-D	mg/L	0.05	0.05	0.062	0.063	1.6	0.98
WA	3-Apr-24	K-T	mg/L	0.05	0.05	0.059	0.054	8.8	1.09
WA	3-Apr-24	Li-D	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
WA	3-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020	0.0	1.00
WA	3-Apr-24	Mg-D	mg/L	0.05	0.05	0.683	0.686	0.4	1.00
WA	3-Apr-24	Mg-T	mg/L	0.05	0.05	0.683	0.635	7.3	1.08
WA	3-Apr-24	Mn-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
WA	3-Apr-24	Mn-T	mg/L	0.001	0.001	0.0013	0.0012	8.0	1.08
WA	3-Apr-24	Mo-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
WA	3-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
WA	3-Apr-24	Na-D	mg/L	0.05	0.05	0.682	0.683	0.1	1.00
WA	3-Apr-24	Na-T	mg/L	0.05	0.05	0.619	0.595	4.0	1.04
WA	3-Apr-24	Ni-D	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
WA	3-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010	0.0	1.00
WA	3-Apr-24	Pb-D	mg/L	0.0002	0.0002	<0.00020	<0.00020	0.0	1.00
WA	3-Apr-24	Pb-T	mg/L	0.0002	0.0002	0.00060	<0.00020	100.0	3.00
WA	3-Apr-24	Sb-D	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
WA	3-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050	0.0	1.00
WA	3-Apr-24	S-D	mg/L	3	3	<3.0	<3.0	0.0	1.00
WA	3-Apr-24	Se-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
WA	3-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
WA	3-Apr-24	Si-D	mg/L	0.0001	0.0001	1.89	1.90	0.5	0.99
WA	3-Apr-24	Si-T	mg/L	0.1	0.1	1.79	1.77	1.1	1.01
WA	3-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
WA	3-Apr-24 3-Apr-24	Sn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
	-				0.005				
WA	3-Apr-24	SO4-D	mg/L	1		<1.0	<1.0	0.0	1.00
WA	3-Apr-24	Sr-D	mg/L	0.001	0.001	0.0108	0.0107	0.9	1.01
WA	3-Apr-24		mg/L	0.001	0.001	0.0100	0.0096	4.1	1.04
WA	3-Apr-24	S-T	mg/L	3	3	<3.0	<3.0	0.0	1.00
WA	3-Apr-24	Ti-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
WA	3-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
WA	3-Apr-24	TI-D	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
WA	3-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010	0.0	1.00
WA	3-Apr-24	TSS	mg/L	1	1	<1.0	<1.0	0.0	1.00
WA	3-Apr-24	U-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00

Pink - Relevative Percent Difference (RPD) is greater than 20%.

Table 44 Relative Percent Difference 19 Page(s)

Stn.Code 1	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio
WA	3-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
WA	3-Apr-24	V-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
WA	3-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
WA	3-Apr-24	Zn-D	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
WA	3-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050	0.0	1.00
WA	3-Apr-24	Zr-D	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
WA	3-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010	0.0	1.00
WC	2-Apr-24	SO4-D	mg/L	5	5	380	380	0.0	1.00
WC	2-Apr-24	TSS	mg/L	1	1	<1.0	2.0	66.7	0.50

Table 45 RPD Greater Than 20% 1 Page(s)

Relative	Percent Difference	ce (RPD) G	reater tha	n 20 %						Are Lab MDL 1
Stn.Code	Date	Param.Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2	Rel.% Diff.	Ratio	and 2 Equal
WC	2-Apr-24	TSS	mg/L	1	1	<1.0	2	66.7	0.5	TRUE
WA	3-Apr-24	Pb-T	mg/L	0.0002	0.0002	0.0006	<0.00020	100	3	TRUE
NNL1	10-Apr-24	P-T	mg/L	0.003	0.003	0.0046	0.0037	21.7	1.24	TRUE
LLM4	17-Apr-24	Turb	NTU	0.1	0.1	0.4	0.51	24.2	0.78	TRUE
LLO	22-Apr-24	TSS	mg/L	1	1	<1.0	1.6	46.2	0.62	TRUE
MQL1	24-Apr-24	Cd-D	mg/L	0.00001	0.00001	0.000016	<0.000010	46.2	1.6	TRUE
MQL1	24-Apr-24	Mn-D	mg/L	0.001	0.001	0.0024	0.0018	28.6	1.33	TRUE
MQL1	24-Apr-24	P-T	mg/L	0.003	0.003	<0.0030	0.01	107.7	0.3	TRUE
MQL1	24-Apr-24	Turb	NTU	0.1	0.1	0.2	0.5	85.7	0.4	TRUE
LQL1	25-Apr-24	Cd-D	mg/L	0.00001	0.00001	0.000022	<0.000010	75	2.2	TRUE
LQL1	25-Apr-24	Mn-D	mg/L	0.001	0.001	0.0019	0.0014	30.3	1.36	TRUE
SPCEFF	29-Apr-24	H2S	mg/L	0.002	0.002	0.057	0.073	24.6	0.78	TRUE
SPCEFF	29-Apr-24	S2-T	mg/L	0.0018	0.0018	0.053	0.069	26.2	0.77	TRUE
MQL4	1-May-24	Fe-D	mg/L	0.005	0.005	0.0187	0.0146	24.6	1.28	TRUE
MQL4	1-May-24	P-T	mg/L	0.003	0.003	0.0039	<0.0030	26.1	1.3	TRUE
PDSR	6-May-24	TSS	mg/L	1	1	1.2	1.6	28.6	0.75	TRUE
QU1410	14-May-24	Turb	NTU	0.1	0.1	22	29	27.5	0.76	TRUE
INF	27-May-24	H2S	mg/L	0.002	0.002	0.0036	<0.0020	57.1	1.8	TRUE
INF	27-May-24	S2-T	mg/L	0.0018	0.0018	0.0034	<0.0018	61.5	1.89	TRUE
SPD	10-Jun-24	TSS	mg/L	1	1	<1.0	1.6	46.2	0.62	TRUE

Table 46 Blanks 11 Page(s)

Ct. C-l-4	D-4-	B	11	Lab MADL 4	1-5-8401-2	Donale 4	D la 2
Stn.Code 1	Date 10-Apr-24	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
EB1	10-Apr-24 10-Apr-24	Ag-T Alk-PP	mg/L	0.00002	0.00002	<0.000020	<0.000020
EB1		Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB1	10-Apr-24	<u>'</u>	mg/L	1 0.002	1	<1.0	<1.0
EB1 EB1	10-Apr-24 10-Apr-24	AI-T As-T	mg/L mg/L	0.003 0.0001	0.003	<0.0030 <0.00010	<0.0030 <0.00010
EB1	· · · · · · · · · · · · · · · · · · ·		<u> </u>		0.0001		
EB1	10-Apr-24 10-Apr-24	Ba-T Be-T	mg/L	0.001 0.0001	0.001	<0.0010 <0.00010	<0.0010 <0.00010
EB1	10-Apr-24 10-Apr-24	B-T	mg/L	0.001	0.0001	<0.0010	<0.0010
EB1	10-Apr-24 10-Apr-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	10-Apr-24 10-Apr-24	Cd-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	10-Apr-24	CI-D	mg/L			<1.0	<1.0
EB1		Co-T	mg/L	1	1		
	10-Apr-24		mg/L	0.0002	0.0002	<0.00020	<0.00020
EB1	10-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	10-Apr-24	Cu-T	mg/L	0.0005	0.0005	0.00096	0.00096
EB1	10-Apr-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB1	10-Apr-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB1	10-Apr-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	10-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB1	10-Apr-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	10-Apr-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	10-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	10-Apr-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	10-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	10-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB1	10-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB1	10-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	10-Apr-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
EB1	10-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB1	10-Apr-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB1	10-Apr-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	10-Apr-24	S-T	mg/L	3	3	<3.0	<3.0
EB1	10-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB1	10-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.00010
EB1	10-Apr-24	Turb	NTU	0.1	0.1	<0.10	<0.10
EB1	10-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	10-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB1	10-Apr-24	Zn-T	mg/L	0.005	0.005	0.0180	0.0180
EB1	10-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	24-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
EB1	24-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0
EB1	24-Apr-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB1	24-Apr-24	AI-T	mg/L	0.003	0.003	<0.0030	<0.0030
EB1	24-Apr-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	24-Apr-24	Ва-Т	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	24-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	24-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	24-Apr-24	Са-Т	mg/L	0.05	0.05	<0.050	<0.050
EB1	24-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.00010	<0.00010
EB1	24-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0
EB1	24-Apr-24	Со-Т	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB1	24-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	24-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB1	24-Apr-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB1	24-Apr-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB1	24-Apr-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	24-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB1	24-Apr-24	Mg-T	mg/L	0.05	0.05	<0.050	< 0.050

Table 46 Blanks 11 Page(s)

Stn.Code 1	Date	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Boards 3
EB1	Date 24-Apr-24	Mn-T		0.001	0.001	<0.0010	Result 2 <0.0010
EB1	24-Apr-24	Mo-T	mg/L mg/L	0.001	0.001	<0.0010	<0.0010
В1	24-Apr-24	Na-T		0.001	0.001	<0.0010	<0.050
В1	24-Apr-24 24-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.030
EB1	24-Apr-24 24-Apr-24	Pb-T	mg/L mg/L	0.001	0.001	<0.0010	<0.0010
B1	24-Apr-24	Sb-T	mg/L	0.0002	0.0002	<0.00050	<0.00050
EB1	24-Apr-24	Se-T	mg/L	0.0003	0.0003	<0.00030	<0.00010
EB1	24-Apr-24	Si-T	mg/L	0.1	0.0001	<0.10	<0.10
B1	24-Apr-24	Sn-T	mg/L	0.005	0.005	<0.10	<0.10
EB1	24-Apr-24	SO4-D	mg/L	1	0.003	<1.0	<1.0
EB1	24-Apr-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
B1	24-Apr-24	S-T		3	3	<3.0	<3.0
EB1	·	Ti-T	mg/L mg/L	0.005	0.005		
B1	24-Apr-24 24-Apr-24	TI-T		0.005		<0.0050	<0.0050
	24-Apr-24 24-Apr-24		mg/L		0.00001	<0.00010	<0.000010
EB1		Turb	NTU	0.1	0.1	<0.10	<0.10
B1	24-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B1	24-Apr-24 24-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB1		Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB1	24-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	1-May-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
B1	1-May-24	Al-T	mg/L	0.003	0.003	<0.0030	<0.0030
B1	1-May-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B1	1-May-24	Ba-T	mg/L	0.001	0.001	<0.0010	<0.0010
B1	1-May-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	1-May-24	B-T	mg/L	0.05	0.05	<0.050	<0.050
B1	1-May-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	1-May-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB1	1-May-24	CI-D	mg/L	1	1	<1.0	<1.0
EB1	1-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB1	1-May-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	1-May-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB1	1-May-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB1	1-May-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB1	1-May-24	К-Т	mg/L	0.05	0.05	<0.050	<0.050
EB1	1-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB1	1-May-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	1-May-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	1-May-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
B1	1-May-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
B1	1-May-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
B1	1-May-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
B1	1-May-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
B1	1-May-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B1	1-May-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
B1	1-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB1	1-May-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB1	1-May-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB1	1-May-24	S-T	mg/L	3	3	<3.0	<3.0
B1	1-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
B1	1-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB1	1-May-24	Turb	NTU	0.1	0.1	<0.10	<0.10
B1	1-May-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B1	1-May-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
B1	1-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
B1	1-May-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	8-May-24	Ag-T	mg/L	0.00002	0.00002	<0.00020	<0.000020
EB1	8-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0

Table 46 Blanks 11 Page(s)

Ctn Codo 1	Data	Daramatar Cada	Heite	Lob MDL 1	Lob MDL 2	Docult 1	Posult 2
Stn.Code 1 EB1	Date 8-May-24	Parameter Code Alkalinity Total as CaCO3	Units	Lab MDL 1	Lab MDL 2	Result 1 <1.0	Result 2 <1.0
B1	8-May-24	Al-T	mg/L mg/L	0.003	0.003	<0.0030	<0.0030
В1	8-May-24	As-T	mg/L	0.003	0.003	<0.0030	<0.0030
В1	8-May-24	Ba-T	mg/L	0.001	0.0001	<0.0010	<0.0010
EB1	8-May-24	Be-T	mg/L	0.001	0.001	<0.0010	<0.0010
B1	8-May-24	B-T	mg/L	0.001	0.0001	<0.050	<0.050
B1	8-May-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB1	8-May-24	Cd-T	mg/L	0.00001	0.0001	<0.00010	<0.00010
B1	8-May-24	Cl-D	mg/L	1	0.00001	<1.0	<1.0
EB1	8-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB1	8-May-24	Cr-T	mg/L	0.0002	0.001	<0.0010	<0.0010
B1	8-May-24	Cu-T	mg/L	0.0005	0.0005	<0.0010	<0.00050
EB1	8-May-24	Fe-T	mg/L	0.0003	0.0003	<0.010	<0.010
EB1	8-May-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
B1	8-May-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
:B1	8-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
:B1	•		<u> </u>	0.002	0.002	<0.0020	<0.0020
B1	8-May-24 8-May-24	Mg-T Mn-T	mg/L mg/L	0.001	0.001	<0.050	<0.050
EB1	· · · · · · · · · · · · · · · · · · ·	Mo-T		0.001	0.001		
EB1	8-May-24	Na-T	mg/L	0.001	0.001	<0.0010 <0.050	<0.0010 <0.050
	8-May-24	Ni-T	mg/L		-		
EB1	8-May-24	Pb-T	mg/L	0.001	0.001 0.0002	<0.0010 <0.00020	<0.0010 <0.00020
	8-May-24 8-May-24	Sb-T	mg/L	0.0002	0.0002	<0.00050	<0.00020
B1			mg/L				
EB1	8-May-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B1	8-May-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
B1	8-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB1	8-May-24	SO4-D Sr-T	mg/L			<1.0	<1.0
EB1	8-May-24	S-T	mg/L	0.001 3	0.001	<0.0010	<0.0010
EB1	8-May-24		mg/L		3	<3.0	<3.0
EB1	8-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB1	8-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
	8-May-24	Turb	NTU	0.1	0.1	0.12	0.12
EB1	8-May-24	U-T V-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB1	8-May-24	Zn-T	mg/L	0.005	0.005 0.005	<0.0050 <0.0050	<0.0050 <0.0050
EB1	8-May-24	Zr-T	mg/L	0.0001	0.003	<0.0030	
EB2	8-May-24		mg/L				<0.00010
	10-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
EB2	10-Apr-24	Alk-PP Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB2	10-Apr-24 10-Apr-24	,	mg/L	1	1	<1.0	<1.0
EB2	·	Al-T	mg/L	0.003	0.003	<0.0030	<0.0030
	10-Apr-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B2	10-Apr-24	Ba-T	mg/L	0.001	0.001	<0.0010	<0.0010
B2 B2	10-Apr-24 10-Apr-24	Be-T B-T	mg/L	0.0001	0.0001	<0.00010 <0.050	<0.00010 <0.050
EB2	·		mg/L	0.05			
	10-Apr-24 10-Apr-24	Ca-T Cd-T	mg/L	0.00001	0.05 0.00001	<0.050 <0.00010	<0.050 <0.000010
B2	10-Apr-24		mg/L				
B2 B2	10-Apr-24 10-Apr-24	CI-D Co-T	mg/L	0.0002	0.0002	<1.0 <0.00020	<1.0 <0.00020
	·		mg/L				
EB2	10-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
B2	10-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
B2	10-Apr-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
B2	10-Apr-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
B2	10-Apr-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
B2	10-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
B2	10-Apr-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	10-Apr-24	Mn-T	mg/L	0.001	0.001	<0.0010	< 0.0010

Table 46 Blanks 11 Page(s)

Chia Calala 4	D-4-	D	11	Lab MADL 4	Lab MADL 2	Decide 4	D 4 2
Stn.Code 1 EB2	Date 10-Apr-24	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
EB2	10-Apr-24 10-Apr-24	Na-T Ni-T	mg/L	0.05	0.05 0.001	<0.050 <0.0010	<0.050 <0.0010
B2	10-Apr-24	Pb-T	mg/L	0.001	0.001	<0.0010	<0.0010
B2	10-Apr-24	Sb-T	mg/L	0.0002	0.0002		
B2	10-Apr-24	Se-T	mg/L mg/L	0.0003	0.0003	<0.00050 <0.00010	<0.00050 <0.00010
B2	10-Apr-24	Si-T	mg/L	0.0001	0.0001	<0.10	<0.0010
B2	10-Apr-24	Sn-T		0.005	0.005	<0.10	<0.0050
B2	10-Apr-24	SO4-D	mg/L		0.003	<1.0	<1.0
B2	10-Apr-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
B2	10-Apr-24	S-T	mg/L mg/L	3	3	<3.0	<3.0
B2	10-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
B2	10-Apr-24	TI-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B2	10-Apr-24	Turb	NTU	0.1	0.00001	<0.00010	<0.00010
B2	10-Apr-24	U-T	mg/L	0.0001	0.0001	<0.0010	<0.0010
B2	10-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
:B2	10-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
:B2	10-Apr-24	Zr-T	<u> </u>	0.0001	0.0001	<0.0030	<0.0030
:B2	24-Apr-24	Ag-T	mg/L mg/L	0.0001	0.0001	<0.00010	<0.00010
B2	24-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0
B2	24-Apr-24 24-Apr-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
B2	24-Apr-24 24-Apr-24	Al-T		0.003	0.003	<0.0030	<0.0030
B2	24-Apr-24 24-Apr-24	As-T	mg/L mg/L	0.003	0.0001	<0.0030	<0.0030
:B2	24-Apr-24	Ba-T	mg/L	0.001	0.0001	<0.0010	<0.0010
:B2	24-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.0010	<0.0010
:B2	24-Apr-24	B-T		0.001	0.0001	<0.050	
:B2	24-Apr-24 24-Apr-24	Ca-T	mg/L	0.05	0.05	0.151	<0.050 0.151
B2	24-Apr-24 24-Apr-24	Cd-T	mg/L mg/L	0.0001	0.00001	<0.00010	<0.00010
B2	24-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0
B2	24-Apr-24	Co-T		0.0002	0.0002	<0.00020	<0.00020
B2	24-Apr-24	Cr-T	mg/L	0.002	0.0002	<0.0010	<0.0010
B2	24-Apr-24 24-Apr-24	Cu-T	mg/L mg/L	0.001	0.001	<0.0010	<0.0010
B2	24-Apr-24	Fe-T	mg/L	0.003	0.0003	<0.010	<0.010
B2	24-Apr-24			0.5	0.01	<0.50	
B2	24-Apr-24	Hardness (as CaCO3) K-T	mg/L	0.05	0.05	<0.050	<0.50 <0.050
B2	24-Apr-24	Li-T	mg/L mg/L	0.002	0.002	<0.030	<0.030
B2	24-Apr-24	Mg-T		0.002	0.002	<0.050	<0.050
B2	24-Apr-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
:B2			mg/L	0.001	0.001		<0.0010
:B2	24-Apr-24 24-Apr-24	Mo-T Na-T	mg/L	0.001	0.001	<0.0010 <0.050	<0.0010
:B2	24-Apr-24	Ni-T	mg/L mg/L	0.001	0.001	<0.0010	<0.0010
:B2	24-Apr-24	Pb-T	mg/L	0.001	0.0002	<0.0010	<0.0010
:B2	24-Apr-24	Sb-T	mg/L	0.0002	0.0002	<0.00050	<0.00050
:B2	24-Apr-24	Se-T		0.0003	0.0003	<0.00030	<0.00030
:B2	24-Apr-24	Si-T	mg/L mg/L	0.0001	0.0001	<0.10	<0.10
:B2	24-Apr-24	Sn-T		0.005	0.005	<0.0050	<0.0050
:B2	24-Apr-24	SO4-D	mg/L	1	1	<1.0	<1.0
:B2	24-Apr-24	Sr-T	mg/L mg/L	0.001	0.001	<0.0010	<0.0010
:B2	24-Apr-24	S-T	mg/L	3	3	<3.0	<3.0
B2	24-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
:B2	24-Apr-24	TI-T	mg/L	0.0001	0.0001	<0.0000	<0.00010
:B2	24-Apr-24 24-Apr-24		NTU	0.00001		<0.00010	<0.00010
:B2	24-Apr-24 24-Apr-24	Turb U-T		0.0001	0.1	<0.10	<0.10
	<u>'</u>		mg/L				
:B2	24-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
:B2	24-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
B2	24-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B2	1-May-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	< 0.000020

Table 46 Blanks 11 Page(s)

	- .			1 1 1 1 1 1 1 1		D 11.4	
Stn.Code 1	Date	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
EB2	1-May-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB2	1-May-24	Al-T	mg/L	0.003	0.003	<0.0030	<0.0030
B2	1-May-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B2	1-May-24	Ba-T	mg/L	0.001	0.001	<0.0010	<0.0010
B2	1-May-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB2	1-May-24	B-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	1-May-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	1-May-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB2	1-May-24	CI-D	mg/L	1 0.0003	1	<1.0	<1.0
EB2	1-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB2	1-May-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB2	1-May-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB2	1-May-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB2	1-May-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
B2	1-May-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	1-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
B2	1-May-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	1-May-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB2	1-May-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB2	1-May-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	1-May-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB2	1-May-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB2	1-May-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
B2	1-May-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B2	1-May-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
B2	1-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB2	1-May-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB2	1-May-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB2	1-May-24	S-T	mg/L	3	3	<3.0	<3.0
EB2	1-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB2	1-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB2	1-May-24	Turb	NTU	0.1	0.1	0.25	0.25
EB2	1-May-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB2	1-May-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB2	1-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB2	1-May-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB2	8-May-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
EB2	8-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0
EB2	8-May-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB2	8-May-24	AI-T	mg/L	0.003	0.003	<0.0030	<0.0030
EB2	8-May-24	As-T	mg/L	0.0001	0.0001	<0.00010	< 0.00010
B2	8-May-24	Ва-Т	mg/L	0.001	0.001	<0.0010	<0.0010
B2	8-May-24	Be-T	mg/L	0.0001	0.0001	<0.00010	< 0.00010
EB2	8-May-24	B-T	mg/L	0.05	0.05	<0.050	< 0.050
B2	8-May-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	8-May-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	< 0.000010
B2	8-May-24	CI-D	mg/L	1	1	<1.0	<1.0
EB2	8-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
B2	8-May-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
B2	8-May-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB2	8-May-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
B2	8-May-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB2	8-May-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	8-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
B2	8-May-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	8-May-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
B2	8-May-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010

Table 46 Blanks 11 Page(s)

		B), Equipment Blanks (EB)				5 114	B 1: 0
Stn.Code 1	Date	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
EB2	8-May-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB2	8-May-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB2	8-May-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB2	8-May-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB2	8-May-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB2	8-May-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
EB2 EB2	8-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB2	8-May-24	SO4-D Sr-T	mg/L	1 0.001	1	<1.0	<1.0
EB2	8-May-24	S-T	mg/L	0.001 3	0.001	<0.0010 <3.0	<0.0010 <3.0
EB2	8-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB2	8-May-24 8-May-24	TI-T	mg/L	0.0001	0.0001	<0.0030	<0.00010
EB2	8-May-24	Turb	mg/L NTU	0.00001	0.00001	0.21	0.21
EB2	8-May-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB2	8-May-24	V-T	mg/L	0.005	0.0001	<0.0050	<0.0050
EB2	8-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB2	8-May-24	Zr-T	mg/L	0.0001	0.0001	<0.0030	<0.0030
EB3	10-Apr-24	Ag-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	10-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0
EB3	10-Apr-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB3	10-Apr-24	Al-T	mg/L	0.003	0.003	<0.0030	<0.0030
EB3	10-Apr-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	10-Apr-24	Ba-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	10-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.0010
EB3	10-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	10-Apr-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	10-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB3	10-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0
EB3	10-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB3	10-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	10-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB3	10-Apr-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB3	10-Apr-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB3	10-Apr-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	10-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB3	10-Apr-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	10-Apr-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	10-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	10-Apr-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	10-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	10-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB3	10-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB3	10-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	10-Apr-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
EB3	10-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	10-Apr-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB3	10-Apr-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	10-Apr-24	S-T	mg/L	3	3	<3.0	<3.0
EB3	10-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	10-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB3	10-Apr-24	Turb	NTU	0.1	0.1	0.12	0.12
EB3	10-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	10-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	10-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	10-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	24-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
EB3	24-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0

Table 46 Blanks 11 Page(s)

Cha Cada 4	Data	Daramatar Cada	11	Lab MADL 4	Lab MADI 3	Donult 4	December 2
Stn.Code 1 EB3	Date 24-Apr-24	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
EB3	24-Apr-24 24-Apr-24	Alkalinity Total as CaCO3 Al-T	mg/L	0.003	0.003	<1.0 <0.0030	<1.0 <0.0030
EB3	24-Apr-24	As-T	mg/L mg/L	0.003	0.003	<0.0030	<0.0030
EB3	24-Apr-24 24-Apr-24	Ba-T	mg/L	0.001	0.0001	<0.0010	<0.0010
EB3	24-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.0010	<0.0010
EB3	24-Apr-24	B-T	mg/L	0.001	0.0001	<0.050	<0.050
EB3	24-Apr-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	24-Apr-24	Cd-T	mg/L	0.00001	0.0001	<0.00010	<0.00010
EB3	24-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0
EB3	24-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB3	24-Apr-24	Cr-T	mg/L	0.0002	0.001	<0.0010	<0.0010
EB3	24-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.0050	<0.0050
EB3	24-Apr-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB3	24-Apr-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB3	24-Apr-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	24-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB3	24-Apr-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	24-Apr-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	24-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	24-Apr-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	24-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	24-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.0020	<0.00020
EB3	24-Apr-24	Sb-T	mg/L	0.0002	0.0002	<0.00050	<0.00050
EB3	24-Apr-24	Se-T	mg/L	0.0003	0.0001	<0.00010	<0.00030
EB3	24-Apr-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
EB3	24-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	24-Apr-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB3	24-Apr-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	24-Apr-24	S-T	mg/L	3	3	<3.0	<3.0
EB3	24-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	24-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.00010	<0.00010
EB3	24-Apr-24	Turb	NTU	0.1	0.1	<0.10	<0.10
EB3	24-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	24-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	24-Apr-24	Zn-T	mg/L	0.005	0.003	<0.0050	<0.0050
EB3	24-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	1-May-24	Ag-T	mg/L	0.00002	0.00002	<0.00010	<0.00010
EB3	1-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0
EB3	1-May-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB3	1-May-24	Al-T	mg/L	0.003	0.003	<0.0030	<0.0030
EB3	1-May-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	1-May-24	Ba-T	mg/L	0.0001	0.001	<0.0010	<0.0010
EB3	1-May-24	Be-T	mg/L	0.0001	0.0001	<0.0010	<0.0010
EB3	1-May-24	B-T	mg/L	0.05	0.001	<0.050	<0.050
EB3	1-May-24	Ca-T	mg/L	0.05	0.05	0.055	0.055
EB3	1-May-24	Cd-T	mg/L	0.00001	0.00001	<0.00010	<0.00010
EB3	1-May-24	CI-D	mg/L	1	1	<1.0	<1.0
EB3	1-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
B3	1-May-24	Cr-T	mg/L	0.002	0.0002	<0.0010	<0.0010
EB3	1-May-24	Cu-T	mg/L	0.0005	0.0005	<0.0010	<0.0010
EB3	1-May-24	Fe-T	mg/L	0.0003	0.0003	<0.010	<0.010
EB3	1-May-24 1-May-24	Hardness (as CaCO3)	mg/L	0.01	0.01	<0.010	<0.50
EB3	•	K-T		0.05	0.05	<0.050	<0.50
EB3	1-May-24		mg/L				
	1-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB3	1-May-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	1-May-24	Mn-T	mg/L	0.001	0.001	<0.0010	< 0.0010

Table 46 Blanks 11 Page(s)

Cha Cada 1	Data	Davamatas Cada	I Indian	Lab MDL 1	Lab MDL 3	Decula 1	Decult 2
Stn.Code 1	Date	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
EB3 EB3	1-May-24 1-May-24	Na-T Ni-T	mg/L	0.05	0.05 0.001	<0.050 <0.0010	<0.050 <0.0010
EB3		Pb-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	1-May-24 1-May-24	Sb-T	mg/L	0.0002	0.0002		
EB3	1-May-24	Se-T	mg/L mg/L	0.0003	0.0003	<0.00050 <0.00010	<0.00050 <0.00010
EB3	1-May-24	Si-T	mg/L	0.0001	0.0001	<0.10	<0.10
EB3	1-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	1-May-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB3	1-May-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	1-May-24	S-T	mg/L	3	3	<3.0	<3.0
EB3	1-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	1-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.00010
EB3	1-May-24	Turb	NTU	0.1	0.1	<0.10	<0.10
EB3	1-May-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	1-May-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	1-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	1-May-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	8-May-24	Ag-T	mg/L	0.00002	0.00002	<0.00010	<0.00010
EB3	8-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0
EB3	8-May-24	Alkalinity Total as CaCO3	mg/L	1	1	1.8	1.8
EB3	8-May-24	Al-T	mg/L	0.003	0.003	<0.0030	<0.0030
EB3	8-May-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	8-May-24	Ва-Т	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	8-May-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	8-May-24	В-Т	mg/L	0.05	0.05	<0.050	<0.050
EB3	8-May-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	8-May-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB3	8-May-24	CI-D	mg/L	1	1	<1.0	<1.0
EB3	8-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB3	8-May-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	8-May-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB3	8-May-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB3	8-May-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB3	8-May-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	8-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB3	8-May-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	8-May-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	8-May-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	8-May-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB3	8-May-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	8-May-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB3	8-May-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB3	8-May-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	8-May-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
EB3	8-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	8-May-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB3	8-May-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB3	8-May-24	S-T	mg/L	3	3	<3.0	<3.0
EB3	8-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	8-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.00010
EB3	8-May-24	Turb	NTU	0.1	0.1	0.21	0.21
EB3	8-May-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB3	8-May-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	8-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB3	8-May-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	10-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
EB4	10-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0

Table 46 Blanks 11 Page(s)

	Data	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
Stn.Code 1 EB4	Date 10-Apr-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB4	10-Apr-24	Al-T	mg/L	0.003	0.003	0.0040	0.0040
EB4	10-Apr-24	As-T	mg/L	0.0001	0.0001	<0.0040	<0.0040
EB4	10-Apr-24	Ba-T	mg/L	0.0001	0.001	<0.0010	<0.0010
EB4	10-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.0010	<0.0010
EB4	10-Apr-24	B-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	10-Apr-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	10-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.00010	<0.000010
EB4	10-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0
EB4	10-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB4	10-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	10-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB4	10-Apr-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB4	10-Apr-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB4	10-Apr-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	10-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB4	10-Apr-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	10-Apr-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	10-Apr-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	10-Apr-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	10-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	10-Apr-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB4	10-Apr-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB4	10-Apr-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	10-Apr-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
EB4	10-Apr-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	10-Apr-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB4	10-Apr-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	10-Apr-24	S-T	mg/L	3	3	<3.0	<3.0
EB4	10-Apr-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	10-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB4	10-Apr-24	Turb	NTU	0.1	0.1	0.20	0.20
EB4	10-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	10-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	10-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	10-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	17-Apr-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
EB4	17-Apr-24	Alk-PP	mg/L	1	1	<1.0	<1.0
EB4	17-Apr-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB4	17-Apr-24	AI-T	mg/L	0.003	0.003	<0.0030	<0.0030
EB4	17-Apr-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	17-Apr-24	Ва-Т	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	17-Apr-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	17-Apr-24	В-Т	mg/L	0.05	0.05	<0.050	<0.050
EB4	17-Apr-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	17-Apr-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB4	17-Apr-24	CI-D	mg/L	1	1	<1.0	<1.0
EB4	17-Apr-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB4	17-Apr-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	17-Apr-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB4	17-Apr-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB4	17-Apr-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB4	17-Apr-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	17-Apr-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB4	17-Apr-24	Mg-T	mg/L	0.05	0.05	< 0.050	< 0.050
EB4	17-Apr-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010

Table 46 Blanks 11 Page(s)

Stn.Code 1	Date	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
EB4	17-Apr-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	17-Apr-24 17-Apr-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.030
EB4	17-Apr-24 17-Apr-24	Pb-T		0.001	0.001	<0.0010	<0.0010
EB4	17-Apr-24 17-Apr-24	Sb-T	mg/L	0.0002	0.0002		
EB4	17-Apr-24 17-Apr-24	Se-T	mg/L mg/L	0.0003	0.0003	<0.00050 <0.00010	<0.00050 <0.00010
EB4	· · · · · · · · · · · · · · · · · · ·	Si-T	<u> </u>	0.0001	0.0001	<0.10	<0.10
	17-Apr-24	Sn-T	mg/L				
EB4	17-Apr-24 17-Apr-24		mg/L	0.005	0.005	<0.0050	<0.0050
EB4	· •	SO4-D	mg/L	1	1	<1.0 <0.0010	<1.0
EB4	17-Apr-24	Sr-T	mg/L	0.001	0.001		<0.0010 <3.0
EB4	17-Apr-24	S-T Ti-T	mg/L	3	3	<3.0	
EB4	17-Apr-24		mg/L	0.005	0.005	<0.0050	<0.0050
EB4	17-Apr-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
B4	17-Apr-24	Turb	NTU	0.1	0.1	0.14	0.14
B4	17-Apr-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B4	17-Apr-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
B4	17-Apr-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	17-Apr-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B4	2-May-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
EB4	2-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0
EB4	2-May-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
B4	2-May-24	Al-T	mg/L	0.003	0.003	<0.0030	<0.0030
B4	2-May-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	2-May-24	Ва-Т	mg/L	0.001	0.001	<0.0010	<0.0010
B4	2-May-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B4	2-May-24	В-Т	mg/L	0.05	0.05	<0.050	<0.050
EB4	2-May-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	2-May-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB4	2-May-24	CI-D	mg/L	1	1	<1.0	<1.0
EB4	2-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB4	2-May-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	2-May-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
B4	2-May-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
B4	2-May-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB4	2-May-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
B4	2-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
B4	2-May-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	2-May-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	2-May-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	2-May-24	Na-T	mg/L	0.05	0.05	<0.050	< 0.050
B4	2-May-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	2-May-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB4	2-May-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB4	2-May-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B4	2-May-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
B4	2-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	2-May-24	SO4-D	mg/L	1	1	<1.0	<1.0
B4	2-May-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	2-May-24	S-T	mg/L	3	3	<3.0	<3.0
:B4	2-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
B4	2-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
B4	2-May-24	Turb	NTU	0.1	0.1	<0.10	<0.10
B4	2-May-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B4	2-May-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
B4	2-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
B4	2-May-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
B4	8-May-24	Ag-T	mg/L	0.00002	0.00002	<0.000020	<0.000020
B4	8-May-24	Alk-PP	mg/L	1	1	<1.0	<1.0

Table 46 Blanks 11 Page(s)

Field Blanks (F	:B) Trin Blanks (T	B), Equipment Blanks (EB)					
Stn.Code 1	Date	Parameter Code	Units	Lab MDL 1	Lab MDL 2	Result 1	Result 2
EB4	8-May-24	Alkalinity Total as CaCO3	mg/L	1	1	<1.0	<1.0
EB4	8-May-24	AI-T	mg/L	0.003	0.003	<0.0030	<0.0030
EB4	8-May-24	As-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	8-May-24	Ba-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	8-May-24	Be-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	8-May-24	В-Т	mg/L	0.05	0.05	<0.050	<0.050
EB4	8-May-24	Ca-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	8-May-24	Cd-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB4	8-May-24	CI-D	mg/L	1	1	<1.0	<1.0
EB4	8-May-24	Co-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB4	8-May-24	Cr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	8-May-24	Cu-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB4	8-May-24	Fe-T	mg/L	0.01	0.01	<0.010	<0.010
EB4	8-May-24	Hardness (as CaCO3)	mg/L	0.5	0.5	<0.50	<0.50
EB4	8-May-24	K-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	8-May-24	Li-T	mg/L	0.002	0.002	<0.0020	<0.0020
EB4	8-May-24	Mg-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	8-May-24	Mn-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	8-May-24	Mo-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	8-May-24	Na-T	mg/L	0.05	0.05	<0.050	<0.050
EB4	8-May-24	Ni-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	8-May-24	Pb-T	mg/L	0.0002	0.0002	<0.00020	<0.00020
EB4	8-May-24	Sb-T	mg/L	0.0005	0.0005	<0.00050	<0.00050
EB4	8-May-24	Se-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	8-May-24	Si-T	mg/L	0.1	0.1	<0.10	<0.10
EB4	8-May-24	Sn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	8-May-24	SO4-D	mg/L	1	1	<1.0	<1.0
EB4	8-May-24	Sr-T	mg/L	0.001	0.001	<0.0010	<0.0010
EB4	8-May-24	S-T	mg/L	3	3	<3.0	<3.0
EB4	8-May-24	Ti-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	8-May-24	TI-T	mg/L	0.00001	0.00001	<0.000010	<0.000010
EB4	8-May-24	Turb	NTU	0.1	0.1	<0.10	<0.10
EB4	8-May-24	U-T	mg/L	0.0001	0.0001	<0.00010	<0.00010
EB4	8-May-24	V-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	8-May-24	Zn-T	mg/L	0.005	0.005	<0.0050	<0.0050
EB4	8-May-24	Zr-T	mg/L	0.0001	0.0001	<0.00010	<0.00010

$Appendix \ II- \textit{Phytoplankton and Zooplankton - Quinsam Lakes} \\$

Phytoplankton Results - Quinsam Lakes
Freshwater Zooplankton Enumeration and Identification Methods Report
Quinsam Coal Corporation for Taxonomic Analyses

Stantec Consulting Ltd. 500-4730 Kingsway Burnaby, BC V5H 0C6

June 28, 2024

123221643

Atikin Hehn

Bureau Veritas Laboratory 4606 Canada Way Burnaby, BC V5G 1K5

Dear Atikin,

Reference: Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07,

CNH376-07, CNH377-07, CNH446-07; Job Numbers C432983, C432974, C432979,

C432992)

Introduction

Quinsam Coal Ltd. collects water samples from the Quinsam Lakes system during the growing season to meet long-term water quality monitoring requirements as per the effluent discharge permit issued by the Ministry of Environment and Climate Change Strategy. From 1994 through 2013, the permit required sampling at depths of 1 m, 4 m and 9 m in April through September for Long Lake and Middle Quinsam Lake, with No Name Lake added to the program in June 2012 and Lower Quinsam Lake added in 2013. In 2014 the permit was revised, limiting sampling to surface water (1.0 m depth) three times per year (spring, late summer, fall overturn). Attachment A contains the long-term dataset.

Samples are collected by Quinsam Coal and submitted to Stantec Consulting Ltd. for phytoplankton taxonomic analysis, as part of ongoing monitoring requirements. Some months, an additional sample is taken as a field replicate for quality assurance/quality control. This brief report provides information about samples collected in May 2024 from Long Lake, No Name Lake, Middle Quinsam Lake, and Lower Quinsam Lake. Attachment B contains the results for May 2024. Attachment C contains copies of the chain of custody forms for May.

Methods

Sub-samples (27 mL) of preserved lake water were settled and examined at 100 X, 400 X and 1,000 X magnifications using a Zeiss inverted microscope. Counting effort is defined as at least 100 organisms of the predominant species at 400 X, up to 200 fields at 1,000 X, and a half or whole sub-sample at 100 X.

Reference: Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07, CNH376-07, CNH377-07, CNH377-07, CNH446-07; Job

Numbers C432983, C432974, C432979, C432992)

Results

Abundance

Abundance data for 1993 to 2023 are summarized in Attachment A and detailed taxonomic results for May 2024 are presented in Attachment B. Total abundance in the May samples is shown in Table 1. Total abundance for May ranged from 990 cells/mL (No Name Lake) to 3,500 cells/mL (Lower Quinsam Lake). These numbers are in the range reported historically.

Table 1 Phytoplankton Abundance (cells/mL) in the Quinsam Lake System, 2024

		Abundance (cells/mL) at 1 m depth						
Lake	Date	Total	<5 μm (1,000 X)	5 to 25 μm (400 X)	>25 µm (100 X)			
Long		1,800	1,600	130	57			
Middle Quinsam		1,400	1,300	160	0.5			
No Name	May 8	990	820	170	0.1			
No Name (replicate)		1,000	830	180	0			
Lower Quinsam		3,500	3,000	500	29			

Species Composition

Species composition data for the May 2024 samples are contained in Attachment B. The most abundant phytoplankton in the four lakes were the very small (less than or equal to $5 \mu m$) chrysoflagellates (*Ochromonas* spp. and *Chromulina* spp.). Although these ultra-nanoplankton species were very abundant numerically, they usually contribute little to algal biomass.

Among the larger algae, the most abundant species were as follows:

- Long Lake chrysophytes Ochromonas spp. and Dinobryon cylindricum (predominant)
- Middle Quinsam Lake Ochromonas spp. (predominant)
- No Name Lake chrysophytes *Ochromonas* spp. and *Mallomonas spp.*, green alga *Oocystis* sp., and cryptophytes *Rhodomonas minuta* and *Cryptomonas* spp. (common, no clear dominant taxa).
- Lower Quinsam Lake Ochromonas spp. (predominant), *Dinobryon sociale, Rhodomonas minuta,* and *Cryptomonas* spp. (common).

The May 2024 samples were similar in composition and abundance to samples collected during the spring in recent years.

June 28, 2024 Atikin Hehn Page 3 of 3

Reference: Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07, CNH376-07, CNH377-07, CNH446-07; Job

Numbers C432983, C432974, C432979, C432992)

Comparison of Replicate Samples

Two replicate samples were collected from 1 m depth in No Name Lake. Percent difference in the duplicate samples was calculated. A difference of up to 10% can be expected for a total cell count of 400 organisms, for repeat sampling from the same bottle; higher percent difference can be expected when separate grabs are used for the replicates, as was done here.

In No Name Lake, total abundance was 1,000 cells/mL in one sample and 990 cells/mL in the other sample, with a difference of 1%. Both abundance and taxonomic composition were similar in the two samples.

Closure

We trust this information meets your present requirements. Should you have any questions or require additional information, please contact the undersigned.

Regards,

Stantec Consulting Ltd.

Karen Munro M.Sc., P.R.Bio. Senior Aquatic Scientist Phone: (604) 436-3014 Karen.Munro@stantec.com Sandra Nelson M.Sc., R.P.Bio.

Senior Aquatic Biologist Phone: (778) 311-0217 Sandra.Nelson@stantec.com

Attachments: Attachment A: Historical Abundance Data: Quinsam Lakes System, 1993–2023

Attachment B: Species Composition Data: May 2024

Attachment C: Chain of Custody: May 2024

June 28, 2024 Atikin Hehn Page A.1

Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07, CNH376-07, CNH377-07, CNH446-07; Job Numbers C432983, C432974, C432979, C432992) Reference:

Attachment A **Historical Abundance Data:** Quinsam Lakes System, 1993–2023

Table 1-1 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 1993 and 1994

System, 1993 and 1994							
Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	> 25 mm (100X)		
	LLM1	2,300	1,800	530			
1993 October	LLM3	3,000	2,400	550			
	LLMB	610	420	000X) (400X) ,800 530 2,400 550 420 190 3,800 1,200 3,800 1,200 3,200 800 ,200 250 790 220 ,900 580 440 390 ,900 180 1700 250 ,100 400 ,400 290 850 200 780 150 620 250 2,000 260			
	LL1R	10,000	8,800	1,200			
1994 May	LL3R	5,000	3,800	1,200			
	LL9R	4,000	3,200	800			
	LL0	1,400	1,200	250			
	LL1	1,000	790	220			
1994 June	LL4	1,500	1,200	320			
1994 June	LL9	2,500	1,900	580			
	LLB	830	440	390			
	LL1	2,100	1,900	180			
1994 July	LL4	1900	1700	250			
	LL9	1,500	1,100	400			
	LL1	1,700	1,400	290			
1994 August	LL4	1,000	850	200			
	LL9	900	780	150			
4004	LL1	900	620	250			
1994 September	LL4	2,300	2,000	260			
Сортопівої	LL9	2,100	1,700	350			

Table 1-2 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 1995

	T T				
Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	> 25 mm (100X)
	LL1	3,100	2,700	340	
April	LL4	3,300	2,900	350	
	LL9	1,300	1,100	280	
	LL1	5,400	4,900	570	
May	LL4	4,800	4,100	700	
	LL9	1,500	1,000	500	
	LL1	2,100	1,800	300	
June	LL4	2,600	2,100	500	
	LL9	7,400	6,600	850	
	LL1	2,000	1,700	300	
July	LL4	1,900	1,650	350	
	LL9	1,500	1,200	300	
	LL1	1,100	960	180	
August	LL4	1,300	1,100	240	
	LL9	1,900	1,700	210	
	LL1	2,900	2,800	170	
September	LL4	3,400	3,100	330	
	LL9	1,900	1,600	280	

Table 1-3 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 1996

Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	> 25 mm (100X)
	LL1	4,600	4,200	340	, ,
Date April May June July August September April May June	LL4	6,000	5,600	380	
	LL9	1,100	960	160	
	LL1	2,200	1,600	600	31
May	LL4	2,200	1,700	540	16
	LL9	1,700	1,400	290	26
	LL1	2,100	1,600	440	4
June	LL4	1,600	1,300	340	2
odi.io	LL9	1,600	1,100	500	9
	LL1	2,400	2,300	140	1
July	LL4	3,200	3,000	200	3
August	LL9	No sample			
	LL1	2,100	1,900	160	1
August	LL4	2,200	1,800	390	37
	LL9	1,700	1,500	200	10
	LL1	1,900	1,600	230	82
September	LL4	2,200	1,800	300	145
	LL9	2,100	1,800	220	38
	MQ1	No sample			
April	MQ4	No sample			
	MQ9	No sample			
	MQ1	2,000	1,700	230	11
May	MQ4	1,100	930	180	7
	MQ9	2,200	1,800	430	1
	MQ1	2,700	2,500	150	3
June	MQ4	2,600	2,400	210	7
	MQ9	1,200	1,000	160 600 540 290 440 340 500 1440 200 160 390 200 230 300 220 230 180 430 150 210 190 335 380 320 280 310 390 270 350	1
	MQ1	2,400	2,100	335	24
July	MQ4	1,900	1,400	380	130
	MQ9	1,200	860	320	29
	MQ1	2,800	2,500	280	17
August	MQ4	1,800	1,500	310	18
	MQ9	2,300	1,900	390	21
	MQ1	1,700	1,300	270	5
September	MQ4	900	560	350	0.6
	MQ9	1,200	1,100	190	0.7

Table 1-4 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 1997

		Total	< 5mm	5 to 25 mm	> 25 mm
Date	Sampling Site	Abundance	(1,000X)	(400X)	(100X)
	LL1	3,200	2,800	340	12
early May	LL4	4,300	4,000	300	32
	LL9	1,700	1,600	140	5
	LL1	3,000	2,600	370	61
June ² July August September early May	LL4	4,900	4,200	620	100
	LL9	4,700	4,000	730	44
	LL1	1,500	1,100	340	2
June ²	LL4	1,200	1,000	240	1
	LL9	3,900	2,700	1,200	50
	LL1	2,400	2,300	110	0
July	LL4	1,700	1,500	170	0.1
ate May ¹ June ² July August September early May ate May	LL9	480	390	80	2
	LL1	1,900	1,700	230	0.2
August	LL4	880	740	140	0.6
	LL9	1,000	870	93	1.4
	LL1	1,000	870	140	0.6
September	LL4	2,000	1,800	270	0.3
	LL9	700	490	210	0.8
	MQ1	1,700	1,400	270	2
early May	MQ4	1,600	1,400	240	2
	MQ9	2,500	2,300	240	2
	MQ1	1,200	1,000	150	0.4
late May	MQ4	1,600	1,300	280	1
	MQ9	1,200	1,000	190	0.2
	MQ1	1,900	1,700	140	1
June	MQ4	2,500	2,400	130	1
	MQ9	1,400	1,200	200	1
	MQ1	2,400	2,300	130	0.3
July	MQ4	1,500	1,400	110	0.1
	MQ9	890	640	260	0.6
	MQ1	2,100	1,900	220	0.8
August	MQ4	1,500	1,300	190	1.4
	MQ9	1,000	760	240	1.6
	MQ1	800	640	170	1.3
September	MQ4	900	620	280	6.4
	MQ9	650	370	280	1.5

NOTES:

^{1.} Recalculated counting Synedra radians at 400X rather than 100X

^{2.} Recalculated counting *Synedra radians* at 400X rather than 100X & *Cyclotella glomerata* at 1,000X rather than 400X

Table 1-5 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 1998

Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	> 25 mm (100X)
	LL1	2,800	2,600	210	12
April	LL4	4,100	3,700	390	12
	LL9	1,600	1,100	500	10
	LL1	2,000	1,500	430	76
May ¹	LL4	1,600	1,100	480	85
	LL9	2,100	1,500	630	20
	LL1	5,700	5,600	140	0.3
June	LL4	7,100	6,900	210	0.3
Julic	LL9	3,300	1,700	1,600	4
	LL1	1,200	1,100	130	10
July	LL4	740	560	170	8
<i>,</i>	LL9	760	130	630	5
	LL1	1,900	1,700	190	2
August	LL4	2,200	2,000	230	2
, lagaot	LL9	1,900	1,600	220	5
	LL1	5,000	4,900	130	2
September	LL4	3,500	3,300	150	2
	LL9	2,200	2,000	220	5
	MQ1	2,200	1,900	250	3
April	MQ4	1,900	1,600	260	3
	MQ9	3,100	2,700	460	2
	MQ1	2,500	2,300	210	1
May	MQ4	2,600	2,400	180	2
September April	MQ9	2,100	1,700	480	0.4
	MQ1	1,900	1,700	180	1
June	MQ4	1,600	1,400	200	1
	MQ9	1,300	1,000	(400X) 210 390 500 430 480 630 140 210 1,600 130 170 630 190 230 220 130 150 220 250 260 460 210 180 480 180	0.4
	MQ1	1,500	1,400	120	19
July	MQ4	1,800	1,600	150	35
	MQ9	1,300	1,100	190	25
	MQ1	1,900	1,700	250	12
August	MQ4	1,300	950	350	10
	MQ9	1,400	890	490	12
	MQ1	2,000	1,800	200	11
September	MQ4	2,700	2,500	220	7
	MQ9	2,100	1,900	230	10

NOTE:

1. Recalculated for counting Synedra radians at 400X rather than 100X

Table 1-6 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 1999

		Total	< 5mm	5 to 25 mm	> 25 mm
Date	Sampling Site	Abundance	(1,000X)	(400X)	(100X)
	LL1	3,800	3,500	310	9
April	LL4	6,800	6,200	560	17
	LL9	3,000	2,600	410	10
	LL1	No sample			
May	LL4	No sample			
	LL9	No sample			
	LL1	1,100	910	150	2
early July	LL4	1,400	1,200	150	1
	LL9	1,300	1,200	100	1
	LL1	1,100	870	200	1
late July	LL4	2,000	1,800	280	1
	LL9	1,000	860	130	1
	LL1	2,700	2,500	180	2
August	LL4	2,800	2,600	170	6
	LL9	3,000	2,800	170	4
	LL1	3,700	3,500	230	12
September	LL4	5,000	4,700	290	17
	LL9	4,000	3,700	290	3
	MQ1	2,300	1,600	220	430
April	MQ4	2,200	1,800	200	230
	MQ9	2,700	1,900	600	190
	MQ1	No sample			
May	MQ4	No sample			
	MQ9	No sample			
	MQ1	790	700	90	0.4
early July	MQ4	770	620	150	0.5
	MQ9	1,100	1,000	130	0.3
	MQ1	2,700	2,600	110	0.2
late July	MQ4	2,100	1,900	220	0.8
	MQ9	620	420	190	0.3
	MQ1	2,100	2,000	140	6
August	MQ4	1,100	980	110	4
	MQ9	1,100	1,000	120	9
	MQ1	1,300	1,100	190	14
September	MQ4	1,500	1,300	190	9
	MQ9	760	540	210	10

Table 1-7 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2000

	Jystem, 2000							
Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	> 25 mm (100X)			
	LL1	2,100	1,600	450	33			
April	LL4	2,500	1,800	700	68			
	LL9	1,300	590	740	6.8			
	LL1	3,300	2,800	530	17			
May	LL4	3,000	2,600	320	15			
	LL9	2,000	1,500	490	15			
	LL1	2,900	2,500	390	9.1			
June	LL4	2,900	2,400	400	19			
	LL9	6,400	5,700	730	19			
	LL1	1,600	1,400	130	2.1			
July	LL4	1,400	1,200	250	1.6			
	LL9	1,200	990	250	3.6			
	LL1	1,800	1,600	170	12			
August	LL4	1,100	940	190	8.2			
	LL9	1,500	1,400	130	1.9			
	LL1	2,200	1,900	360	11			
September	LL4	2,000	1,800	200	9.2			
	LL9	1,300	1,100	200	7.2			
	MQ1	1,800	1,300	450	5.9			
April	MQ4	1,700	1,300	420	1.6			
	MQ9	1,500	1,200	280	1.7			
	MQ1	1,800	1,500	290	3			
May	MQ4	1,600	1,300	290	4.4			
	MQ9	1,900	1,600	270	7.6			
	MQ1	2,100	1,900	250	1.4			
June	MQ4	2,400	2,200	200	2.1			
	MQ9	1,800	1,500	380	1.1			
	MQ1	1,300	1,100	210	7.4			
July	MQ4	2,100	1,800	250	9.6			
	MQ9	2,100	1,300	190 130 360 200 200 450 420 280 290 270 250 200 380 210 250 800	22			
	MQ1	1,500	1,200	290	5.8			
August	MQ4	2,200	1,900	310	7.2			
	MQ9	2,400	1,900	500	7.5			
	MQ1	1,800	1,600	200	14			
September	MQ4	2,100	1,900	250	14			
	MQ9	2,000	1,700	220	28			

Table 1-8 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2001

		Total	< 5mm	5 to 25 mm	> 25 mm
Date	Sampling Site	Abundance	(1,000X)	(400X)	(100X)
	LL1	3,300	2,600	670	19
April	LL4	4,400	3,900	830	13
	LL9	1,400	860	490	5
	LL1	7,700	6,200	1,100	310
Мау	LL4	11,000	10,000	980	100
	LL9	4,600	3,600	670	22
	LL1	7,800	6,600	1,000	170
June	LL4	6,800	5,100	1,500	210
	LL9	3,000	2,400	680	25
	LL1	3,300	3,100	170	1
July	LL4	3,200	3,000	180	1
	LL9	1,600	1,400	160	2
	LL1	1,300	1,100	180	1
August	LL4	1,700	1,500	200	2
	LL9	720	540	170	1
	LL1	8,200	8,000	270	13
September	LL4	8,800	8,600	260	13
	LL9	4,800	4,600	190	1
	MQ1	3,600	3,200	400	10
April	MQ4	3,500	3,200	310	11
	MQ9	5,700	4,900	830	24
	MQ1	1,900	1,500	360	17
May	MQ4	1,800	1,400	370	14
	MQ9	3,800	3,200	600	13
	MQ1	2,200	1,900	240	2
June	MQ4	3,700	3,400	310	2
	MQ9	4,000	3,600	390	4
	MQ1	2,500	2,300	230	8
July	MQ4	2,700	2,400	260	6
	MQ9	1,500	1,200	240	8
	MQ1	1,800	1,600	190	17
August	MQ4	1,900	1,700	180	15
	MQ9	1,800	1,600	160	16
	MQ1	1,900	1,700	180	24
September	MQ4	3,200	2,900	230	37
	MQ9	1,800	1,600	190	43

Table 1-9 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2002

Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	> 25 mm (100X)
	LL1	5,600	5,100	460	57
April	LL4	5,600	5,100	490	40
•	LL9	1,300	1,100	220	12
	LL1	2,600	1,900	710	29
May	LL4	2,700	2,000	690	41
•	LL9	1,800	1,300	460	37
	LL1	5,800	5,300	340	140
June	LL4	9,200	8,600	450	96
	LL9	3,700	3,000	620	27
	LL1	2,900	2,700	180	0.3
July	LL4	2,400	2,200	160	0.6
-	LL9	3,900	3,300	560	41.2
	LL1	2,900	2,800	140	7.2
August	LL4	2,300	2,200	150	3.2
August	LL9	1,500	1,400	130	0.6
	LL1	3,900	3,700	220	27
September	LL4	3,500	3,200	260	31
•	LL9	2,500	2,300	210	2.2
	MQ1	2,000	1,700	360	8.2
April	MQ4	1,900	1,600	300	3.6
•	MQ9	1,500	1,200	260	4
	MQ1	1,400	1,100	270	1.1
May	MQ4	1,400	1,200	230	1.7
•	MQ9	1,400	1,100	330	1.4
	MQ1	1,000	940	110	1
June	MQ4	800	680	120	0.3
	MQ9	60	50	7	0
	MQ1	1,700	1,300	330	50
July	MQ4	1,500	1,100	360	34
•	MQ9	940	700	240	5.5
	MQ1	1,400	1,200	140	42
August*	MQ4	1,200	940	180	76
J	MQ9	2,600	200	300	275
	MQ1	1,400	1,200	160	33
September	MQ4	2,100	1,900	220	28
,	MQ9	1,100	920	160	28

NOTE:

* Recalculated for counting Cyclotella bodanica at 400X rather than 100X

Table 1-10 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2003

	Jaysteili, 2003			1	
Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	> 25 mm (100X)
	LL1	4,800	4,200	560	36
April	LL4	3,600	2,900	640	8.6
	LL9	640	450	190	6.9
	LL1	4,200	3,500	620	25
May	LL4	4,600	3,800	800	23
	LL9	1,400	1,100	280	16
	LL1	2,300	1,600	630	37
June	LL4	6,800	6,100	600	43
	LL9	4,500	3,800	680	42
	LL1	1,600	1,400	240	1
July	LL4	2,400	2,100	270	0.5
	LL9	2,900	2,700	(400X) 560 640 190 620 800 280 630 600 680 240	9.8
	LL1	2,000	1,800	240	0.8
August	LL4	2,200	1,900	250	0.5
	LL9	1,900	1,600	260	0.6
	LL1	2,600	2,400	290	0.2
September	LL4	3,700	3,400	340	1.8
	LL9	1,900	1,600	250	1.9
	MQ1	3,500	2,900	570	28
April	MQ4	3,000	2,400	510	17
	MQ9	2,000	1,600	310	17
	MQ1	2,900	2,400	350	99
May	MQ4	3,000	2,400	480	43
	MQ9	3,000	2,500	(400X) 560 640 190 620 800 280 630 600 680 240 250 240 250 260 290 340 250 570 510 310 350 480 560 180 420 350 170 380 240 280 240 620 260	16
	MQ1	1,300	1,100	180	6
June	MQ4	1,900	1,500	420	21
	MQ9	3,000	2,700	350	16
	MQ1	2,700	2,600	170	0.5
July	MQ4	2,000	1,600	380	1.5
	MQ9	1,400	1,100	240	79
	MQ1	1,300	1,000	280	43
August	MQ4	1,500	1,200	240	44
	MQ9	3,500	2,500	620	338
	MQ1	2,100	1,900	260	6.5
September	MQ4	2,300	2,000	290	23
	MQ9	Not availab	le		

Table 1-11 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2004

	Gystem, 2004				
Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	> 25 mm (100X)
	LL1	5,300	4,100	1,200	20
April	LL4	3,500	2,600	860	13
	LL9	3,300	2,600	730	9.1
	LL1	8,000	7,100	860	34
May	LL4	6,600	5,300	1,200	36
	LL9	2,800	2,000	770	22
	LL1	2,900	2,600	270	3.1
June	LL4	2,900	2,600	310	5
	LL9	4,900	4,100	730	39
	LL1	1,600	1,300	280	2.7
July	LL4	1,200	1,100	170	2.2
	LL9	1,700	1,400	270	1
	LL1	1,300	960	350	18
August	LL4	1,400	1,000	300	38
	LL9	1,700	1,600	110	27
	LL1	3,800	3,400	370	27
0 1	LL4	4,300	3,900	350	25
September	LL4 - duplicate	3,100	2,800	320	19
	LL9	3,000	2,700	280	12
	MQ1	1,500	1,120	400	2.2
April	MQ4	1,400	1,030	370	5.2
	MQ9	1,500	1,200	340	4.2
	MQ1	2,300	2,000	310	2.4
May	MQ4	1,500	1,200	300	3.6
	MQ9	2,600	2,100	470	2.4
	MQ1	1,900	1,700	190	34
June	MQ4	3,000	2,700	250	48
	MQ9	2,200	1,900	210	123
	MQ1	1,200	960	260	6.2
July*	MQ4	1,700	1,400	260	9.9
	MQ9	1,300	840	340	82
	MQ1	2,900	2,600	260	53
August**	MQ4	3,800	3,500	250	51
	MQ4 -	2,500	2,200	210	53
	MQ9	3,900	3,600	260	44
September	MQ1	2,300	1,700	550	25
	MQ4	2,100	1,600	420	26
	MQ9	2,500	2,000	520	19

NOTES:

^{*} MQ9 recalculated for counting Cyclotella bodanica at 400X rather than 100X

^{**} MQ1, MQ4, MQ9 recalculated for counting *Elakatothrix gelatinosa* colonies at 400X rather than

Table 1-12 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2005

Date	Sampling Site	Total Abundance	< 5mm	5 to 25 mm	> 25 mm (100X)
Date	LL1	2,700		· · · · ·	24
April	LL4	3,500			29
Aprii	LL9	670			8.5
	LL1	7,200			55
May	LL4	5,700			20
iviay	LL9	1,300			20
	LL9	2,700			2.4*
June	LL4	2,700			8.3*
Julie	LL4 LL9				
		990			8.9
luka	LL1	1,200			44*
July	LL4	1,700			33*
	LL9	692	< 5mm (1,000X) 5 to 25 mm (400X) 2,100 550 2,800 610 460 200 6,600 670 4,900 850 850 440 2,400 300 2,500 330 850 130 800 400 1,200 460 540 150 1,100 290 810 220 1,900 360 1,100 170 1,900 360 1,100 170 1,500 400 1,300 400 1,300 400 1,200 330 1,000 340 1,600 150 710 270 900 200 860 220 920 200 700 170 1,600 250 1,700 330 710 <td>3.5*</td>	3.5*	
	LL1	1,400			26
August	LL4	1,100			64
	LL9	2,400			73
	LL1	1,400			170
September	LL4	2,300	1,900		170
·	LL9	1,800	1,200	590	31*
	MQ1	1,400	1,100	370	8.8
April	MQ4	1,900		400	3.6
	MQ9	1,700	1,300	400	6.6
	MQ1	1,300	1,000	300	3.4
May	MQ4	1,500	1,200	330	3.2
	MQ9	1,300	1,000	340	3.7
	MQ1	1,700	1,600	150	4.6
June	MQ4	1,000	710	270	2.1
	MQ9	1,100	900	200	1.1
	MQ1	1,100	860	220	14.6
July ¹	MQ4	1,100	920	200	11.2
- ,	MQ9	1,400	700	170	489
	MQ1	1,100	950	170	0.5
August ²	MQ4	1,900			7.1
	MQ9	2,100			89*
	MQ1	870			10.7
September	MQ4	1,200			20.2
	MQ9	1,400	1,100	180	146

NOTE:

* = Cyclotella bodanica counted at 400X rather than 100X

Phytoplankton Abundance (cells/mL) in the Quinsam Lakes **Table 1-13** System, 2006

		Total	< 5mm	5 to 25 mm	> 25 mm
Date	Sampling Site	Abundance	(1,000X)	(400X)	(100X)
	LL1	1,800	1,100	610	1.9*
April	LL4	3,200	2,700	520	14.7
	LL9	690	550	135	2.2
	LL1	2,600	2,000	620	19.7
Мау	LL4	4,900	4,200	640	12.9
	LL9	540	380	(400X) 610 520 135 620	4.8
	LL1	860	610	200	39.5
luno	LL4	2,000	1,800	190	22.2
June	LL4 (rep)	1,100	940	190	23.2
	LL9	1,700	1,400	220	17.7
	LL1	1,300	1,100	160	54.8
July	LL4	2,700	2,200	370	165
	LL9	1,700	1,300	350	19.1
	LL1	2,700	2,500	200	14.3
August	LL4	2,600	2,300	220	34.6
	LL9	2,800	2,300	470	23.8
September	LL1	3,800	3,600	160	0.4
	LL4	1,300	1,200	120	2
	LL9	1,800	1,700	130	3.6
	MQ1	2,200	16,00	240	9.4
April	MQ4	2,400	1,900	550	8.6
	MQ9	1,600	1,400	160 200 190 190 220 160 370 350 200 220 470 160 120 130 240 550 180 240 320 310 280 130 200 240 240 240 320 320 310 280 320 310 280 320 320 320 320 320 320 320 32	8.2
	MQ1	1,700	1,500	240	10.8
	MQ4	1,700	1,400	320	7.4
May	MQ4 (rep)	2,100	1,800	310	11.8
	MQ9	1,900	1,600	280	4.1
	MQ1	1,900	1,800	130	0.9
June	MQ4	1,400	1,200	200	4.4
	MQ9	950	840	110	0.6
	MQ1	1,100	870	220	42.8
July	MQ4	2,000	1,700	260	16.6
-	MQ9	2,300	2,100	180	18.8*
	MQ1	1,500	1,200	280	6.5
August	MQ4	2,100	1,800	290	13.3
-	MQ9	1,300	880	400	17.0*
	MQ1	2,500	2,300	200	1.9
September	MQ4	2,100	1,800		11.8
•	MQ9	3,400	2,400	970	1.8*

* Cyclotella bodanica (diatom) counted at 400X rather than 100X

Table 1-14 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2007

	Lakes System	Total	< 5mm	5 to 25 mm
Date	Sampling Site	Abundance	(1,000X)	(400X)
	LL1	3,100	2,800	240
April	LL4	3,000	2,200	620
	LL9	1,200	910	240
	LL1	2,600	2,000	540
May	LL4	3,300	2,600	670
	LL9	1,300	890	430
	LL1	2,100	1,600	420
June	LL4	2,500	2,000	520
	LL9	1,100	750	300
	LL1	2,300	2,000	240
July	LL4	2,400	2,100	270
	LL9	3,100	3,000	180
	LL1	1,100	900	240
A 4	LL4	2,300	2,100	150
August	LL4 (rep)	2,600	2,400	150
	LL9	570	480	90
	LL1	2,500	2,200	280
September	LL4	1,700	1,400	240
	LL9	420	2,800 2,200 910 2,000 2,600 890 1,600 2,000 750 2,000 2,100 3,000 900 2,100 2,400 480 2,200	68
	MQ1	1,700	1,500	230
April	MQ4	1,900	1,602	300
	MQ9	1,100	900	200
	MQ1	1,500	1,300	250
May	MQ4	1,800	1,500	320
	MQ9	2,600	2,300	310
	MQ1	1,500	1,200	300
June	MQ4	1,800	1,600	200
	MQ9	1,500	1,200	290
	MQ1	1,500	1,100	220
luk	MQ4	1,900	1,500	440*
July	MQ9	1,000	860	150
	MQ9 (rep)	1,600	1,400	150
	MQ1	2,300		200
August	MQ4	1,100	970	160
	MQ9	710	590	120
	MQ1	1,400	1,100	270
September	MQ4	1,500	1,200	290
	MQ9	1,000	690	300

Table 1-15 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2008

Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 mm (400X)	>25 mm (100X)	> 25 µm (100X)
	LL1	2,500	2,070	360	13	30
April	LL4	3,100	2,500	540	22	50
· •	LL9	1,300	1,030	240	6.4	20
	LL1	3,100	2,840	220	36	20
May	LL4	5,300	4,820	430	37	25
	LL9	1,300	1,030	260	11	20
	LL1	1,000	880	110	40	1
luma	LL4	960	730	220		8
June	LL9 (rep)	1,500	1,060	380*	40	16*
	LL9	1,200	780	380*	10	7*
	LL1	1,000	970	80	2.1	1
July	LL4	1,400	1,300	110	7.8	17
	LL9	2,000	1,500	370	4.2	110
	LL1	1,100	1,000	50	5.6	1
August	LL4	1,400	1,300	50	5.8	11
	LL9	1,100	1,060	40	2.8	9
	LL1	2,100	1,730	420**	16	2**
September	LL4	2,300	1,780	490**	13	3**
	LL9	2,900	2,250	690**	4.4	6**
	MQ1	2,100	1,850	200	2.8	1
April	MQ4	1,700	1,530	200	5.8	3
	MQ9	2,800	2410	400	5	4
	MQ1	1,000	870	130	2.1	1
May	MQ4	1,700	1460	230	1.2	2
	MQ9	1,200	1,000	180	2.7	2
	MQ1	840	700	140	2.9	0.4
June	MQ4	1,300	1,040	240	2.1	1
	MQ9	870	580	280	5.8	0.5
	MQ1	620	520	90	180	8
luk	MQ4	500	370	130	7.4	8
July	MQ9	870	680	180	3.3	0.5
	MQ9 (rep)	1,000	760	260	0.8	9
	MQ1	750	660	100	5.8	1
August	MQ4	980	860	110	14	6
	MQ9	1,300	990	290		5
	MQ1	1,500	1,310	160		14
September	MQ4	1,100	980	150		3
	MQ9	2,800	2,680	130		10

NOTES

^{*} Synedra radians (diatom) counted at 400X rather than 100X, due to high numbers

^{**} Asterionella formosa (diatom) counted at 400X rather than 100X, due to high numbers

Table 1-16 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2009

	System, 2009				
Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 μm (400X)	> 25 µm (100X)
	LL1	780	480	300	6
April	LL4	1,600	1,220	340	4
	LL9	90	60	30	1
	LL1	6,000	5,150	820	19
May	LL4	4,900	4,100	760	10
	LL9	430	290	(400X) 300 340 30 820	5
	LL1	1,700	1,370	370	5
June	LL4	1,400	1,030	360	12
	LL9	680	340	330	6
	LL1	2,100	1,900	270	3
July	LL4	2,700	2,400	330	4
	LL9	700	340	350	4
	LL1	3,100	2,900	170	3
August	LL4	2,400	2,200	190	15
	LL9	1,700	1,300	370	10
	LL1	3,700	3,500	220	5
September	LL4	2,300	2,100	180	3
	LL9	1,100	950	170 190 370 220 180 170 250 160 520 260	1
	MQ1	1,400	1,130	250	33
April	MQ4	1,300	1,170	160	12
	MQ9	2,300	2,730	520	13
	MQ1	1,700	1,440	260	3
May	MQ4	2,100	1,750	340	5
	MQ9	3,800	3,060	720	18
	MQ1	1,500	1,360	160	0.1
June	MQ4	1,100	990	150	0.2
	MQ9	1,100	940	200	0.8
	MQ1	1,000	790	190	4
July	MQ4	1,300	1,100	220	8
	MQ9	1,200	940	240	5
	MQ1	610	450	160	0.3
August	MQ4	1,300	1,170	170	3
	MQ9	1,600	1,200	390	0.4
	MQ1	830	670	160	5
September	MQ4	1,200	970	170	6
	MQ9	1,400	1,200	240	1

Table 1-17 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2010

Date Total Abundance Abundance < 5mm (1,000X) (400X)	> 25 µm
April LL4 1,900 1,500 390 LL9 170 100 70 LL1 1,200 940 270 May LL4 4,500 3,800 650 LL9 530 390 140 LL1 2,400 1,900 500 LL4 3,600 3,000 610 LL9 1,500 1,100 400 LL1 2,100 1,900 170	(100X)
LL9 170 100 70 LL1 1,200 940 270 LL4 4,500 3,800 650 LL9 530 390 140 LL1 2,400 1,900 500 LL4 3,600 3,000 610 LL9 1,500 1,100 400 LL1 2,100 1,900 170	1.6
May	3
May LL4 4,500 3,800 650 LL9 530 390 140 LL1 2,400 1,900 500 LL4 3,600 3,000 610 LL9 1,500 1,100 400 LL1 2,100 1,900 170	0.4
LL9 530 390 140 LL1 2,400 1,900 500 LL4 3,600 3,000 610 LL9 1,500 1,100 400 LL1 2,100 1,900 170	13.4
June LL1 2,400 1,900 500 LL4 3,600 3,000 610 LL9 1,500 1,100 400 LL1 2,100 1,900 170	17
June LL4 3,600 3,000 610 LL9 1,500 1,100 400 LL1 2,100 1,900 170	0.9
LL9 1,500 1,100 400 LL1 2,100 1,900 170	5.2
LL1 2,100 1,900 170	11
·	10.6
II.1 (rep) 1.900 1.700 180	8.7
1.1	5
July LL4 3,000 2,800 250	2
LL9 1,900 1,700 210*	0
LL1 1,200 990 180	1.5
LL4 1,600 1,400 190	1
August LL4 (rep) 1,600 1,400 180	2
LL9 1,800 1,600 170	0
LL1 2,100 1,800 260	15.1
September LL4 4,400 4,200 200	5
LL9 1,200 1,100 130	0.4
MQ1 1,700 1,600 100	0.4
April MQ4 1,200 1,100 120	1
MQ9 800 710 90	2.4
MQ1 1,100 990 120	0.9
May MQ4 1,100 960 150	1
MQ9 1,600 1,330 240	2.9
MQ1 2,000 1,700 270	0.9
June MQ4 1,400 1,100 240	1
MQ9 1,000 850 200	1.1
MQ1 1,800 1,500 250	8.7
MQ1 (rep) 1,400 1,300 170	6
July MQ4 1,500 1,300 180	10
MQ9 1,600 1,400 180	4
MQ1 1,400 1,200 140	7.2
MQ4 1,000 870 160	5
August MQ4 (rep) 1,100 900 150	5
MQ9 1,200 1,000 150	8
MQ1 1,300 1,000 260	1.3
September MQ4 1,300 1,040 220	
MQ9 1,100 900 190	3

Table 1-18 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2011

System, 2011							
Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 μm (400X)	> 25 µm (100X)		
	LL1	1,700	1,400	220	52		
April	LL4	3,900	3,260	540	80		
	LL9	2,200	1,820	340	9		
	LL1	3,600	2,880	720	6		
May	LL1 (rep)	3,500	2,790	690	6		
May	LL4	4,900	4,160	700	6		
	LL9	1,300	900	(400X) 220 540 340 720 690 700 350 330 290 450 270 350 300 320 280 380 380 380 190 270 490 190 170 410 920 150 200 520 110 230 200 210 280 200 190 190	5		
	LL1	2,100	1,750	330	36		
June	LL4	2,300	2,050	290	3		
	LL9	1,500	1,060	(400X) 220 540 340 720 690 700 350 330 290 450 270 350 300 320 380 320 280 380 190 270 270 490 190 170 410 920 150 200 520 110 230 200 200 210	4		
	LL1	1,400	1,150	270	3		
July	LL4	1,800	1,440	350	1		
July	LL4 (rep)	1,900	1,600	300	0.1		
	LL9	1,900	1,550	320	2		
	LL1	2,900	2,500	360	15		
August	LL4	1,800	1,400	320	27		
	LL9	1,500	1,200	360 320 280 380 380 190 270	0.9		
	LL1	1,300	940	380	2.2		
September	LL4	1,800	1,500	380	0.4		
	LL9	960	770	190	0.3		
	MQ1	1,600	1,370	270	7		
April	MQ4	1,400	1,160	270	6		
	MQ9	1,900	1,400	320 280 380 380 190 270 270 490 190 170 410	3		
	MQ1	1,200	1,050	190	2		
May	MQ1 (rep)	1,200	1,040	170	3		
May	MQ4	1,800	1,370	410	4		
	MQ9	1,600	670	920	4		
	MQ1	2,000	1,840	150	1		
June	MQ4	1,500	1,300	200	1		
	MQ9	1,700	1,200	520	10		
	MQ1	2,200	2,100	110	0.4		
July	MQ4	1,600	1,330	230	3		
July	MQ9	1,000	770	200	1		
	MQ9(rep)	1,100	860	200	1		
	MQ1	1,400	1,200	210	4		
August	MQ4	3,300	3,000	280	0.6		
	MQ9	1,200	1,000	200	0.1		
	MQ1	2,300	2,100	190	17.2		
September	MQ4	2,600	2,400	190	0.2		
	MQ9	1,600	1,400	240	9.6		

Table 1-19 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2012

Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 μm (400X)	> 25 µm (100X)
	LL1	2,300	1,980	330	5
April	LL4	3,200	2,570	590	6
	LL9	1,000	800	190	6
	LL1	3,000	2,470	470	15
May	LL4	2,200	1,640	600	7
	LL9	2,300	2,050	280	7
	LL1	1,400	1,080	310	3
le com m	LL4	1,700	1,400	320	2
June	LL9	980	810	170	2
	LL9 (rep)	1,200	1,020	140	1
	LL1	1,600	1,390	170	3
July	LL4	S	ample lost in trai	nsit (broken bottle	e)
	LL9	880	730	150	2
	LL1	970	740	210	19
August	LL1 (rep)	940	760	170	14
August	LL4	1,300	990	250	35
	LL9	380	250	130	0.5
	LL1	San	nple unpreserve	d – no analysis d	one
September	LL4	2,800	2,350	480	1
	LL9	San	nple unpreserve	d – no analysis d	one
	MQ1	2,200	2,010	200	3
April	MQ4	1,700	1,440	220	3
	MQ9	1,600	1,420	180	5
	MQ1	1,100	990	140	1
May	MQ4	830	680	140	0
	MQ9	1,200	1,000	150	0.2
	MQ1	2,100	1,920	170	0.4
	MQ4	890	740	150	0.3
June	MQ9	1,100	910	200	0.4
	MQ9 (rep)	1,100	920	200	0.5
	MQ1	1,300	1,210	100	0.4
July	MQ4	1,100	1,010	90	10
	MQ9	740	640	100	1
	MQ1	1,030	860	180	0.8
	MQ1 (rep)	920	720	200	0.2
August	MQ4	810	660	140	10
	MQ9	430	340	90	1.6
	MQ1	900	730	170	0.5
September	MQ4	760	650	115	2
	MQ9	580	430	160	0.5
	NNL1	1,600	1,240	320	0.5
	NNL4	1,000	670	370	0.2
June	NNL9	840	700	140	1
	NNL9 (rep)	880	730	160	0.8

Table 1-19 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2012

Date	Sampling Site	Total Abundance	< 5mm (1,000X)	5 to 25 μm (400X)	> 25 µm (100X)
	NNL1	1,300	1,000	260	1.2
July	NNL4	1,700	1,390	310	1
	NNL9	820	540	280	0.2
	NNL1	810	660	150	1.6
August	NNL1 (rep)	790	590	200	1
August	NNL4	1,800	1,350	440	0.8
	NNL9	730	530	195	0.04
	NNL1	1,530	1,170	360	1.2
September	NNL4	1,260	970	290	2
	NNL9	1,740	1530	220	0.2

Table 1-20 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2013

Sampling Site	Date	Depth	< 5mm (1,000X)	< 5 μm (1,000X)	5 to 25 μm (400X)	> 25 µm (100X)
	April	0.5 m	2,300	1,750	530	10
		1 m	3,000	2,470	570	15
I amm I alsa	August	0.5 m	1,300	880	455	2
Long Lake		1.0 m	1,700	1,170	470	15
	October	0.5 m	1,500	1,150	340	12
		1.0 m	1,900	1440	400	14
	April	0.5 m	1,350	1,080	270	2
		1.0 m	1,400	1,150	250	2
	August	0.5 m	1,300	1,045	235	7
Middle Quinsam		1.0 m	1,300	1,010	325	6
Lake		1.0 m (rep)	1,200	990	230	9
	October	0.5 m	1,800	1,440	350	2
		1.0 m	1,900	1,570	290	2
		1.0 m (rep)	1,600	1,310	300	3
	April	0.5 m	1,300	900	370	45
		1.0 m	1,600	1,150	380	36
	August	0.5 m	1,200	880	440	5
No Name Lake		1.0 m	1,500	1,060	455	6
		1.0 m (rep)	1,700	1,315	470	8
	October	0.5 m	1,800	1,310	460	1
		1.0 m	1,600	1,060	540	1
	April	0.5 m	1,800	1,420	406	2
		1 m	950	700	245	2
Lower Quinsam	August	0.5 m	960	810	150	2
Lake		1.0 m	620	460	160	3
	October	0.5 m	1,300	1,040	200	12
		1.0 m	1,300	1,060	230	4

Table 1-21 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2014

Sampling Site	Date	Depth	< 5mm (1,000X)	< 5 μm (1,000X)	5 to 25 μm (400X)	> 25 μm (100X)
	April	1 m	3100	2665	330	86.6
Long Lake	July	1 m	1700	1170	490	0.9
	October	1 m	1500	1200	290	18.6
	April	1 m	1000	840	155	11.4
Middle Quinsam		1 m replicate	590	480	100	11.7
Lake	July	1 m	3200	2950	240	0.5
	October	1 m	1700	1400	310	3.2
	April	1 m	1600	1260	290	83
	July	1 m	1300	970	310	2.5
No Name Lake		1 m replicate	1200	830	250	3.1
	October	1 m	1600	1400	200	1.7
		1 m replicate	1500	1200	230	2.2
Lauran Ouina - :	April	1 m	1600	1400	225	7.6
Lower Quinsam Lake	July	1 m	1200	1010	210	1.8
Lake	October	1 m	2400	2000	350	66

Table 1-22 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2015

	- · · · , · · , · · · · · · · · · · · · · · · · · · ·					
			< 5mm	< 5 µm	5 to 25 μm	> 25 µm
Lake	Month	Depth (m)	(1,000X)	(1,000X)	(400X)	(100X)
	April	1	3700	3300	400	15
Long	July	1	1300	1030	260	6.6
	October	1	1 2100 1800 230 1 1600 1300 300 1 2900 1060 1850 1 1150 920 230 1 1200 870 350	230	14.6	
	April	1	1600	1300	300	2.4
Middle Quinsam	July	1	2900	1060	1850	2.8
	October	1	1150	920	230	0.3
	April	1	1200	870	350	1.1
	July	1	880	610	260	6.6
No Name	October	1	1350	1000	300	4.3
	October replicate	1	1200	920	280	4.5
	April	1	2200	1800	350	28
Lower Quinsam	April replicate	1	2300	1800	520	18
Lower Quinsam	July	1	3200	580	2630	3.3
	October	1	1500	1100	330	71

Table 1-23 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2016

	System, 2016	Γ					
		Abundance (cells/mL) at 1 m depth					
Lake	Month	Total	< 5 μm (1,000 X)	5 to 25 μm (400 X)	> 25 μm (100 X)		
Long		1,500	1,300	240	5.5		
Middle Quinsam		1,100	882	240	2.8		
No Name	April	1,100	864	240	1.8		
No Name (replicate)]/\pi	970	792	180	1.8		
Lower Quinsam		1,500	1,200	260	5.4		
Long		1,200	990	140	22		
Middle Quinsam	7	930	810	116	1.5		
No Name	August	1,800	1,200	500	42		
No Name (replicate)		1,900	1,280	595	46		
Lower Quinsam		2,400	1,850	578	1.4		
Long		780	640	140	0.5		
Middle Quinsam	November	610	520	90	3		
No Name	INOVEITIBEI	650	600	50	0.4		
Lower Quinsam		300	250	50	0		

Table 1-24 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2017

	I Joseph	A I-		/	41-
		Abundance (cells/mL) at 1 m depth			
			< 5 µm	5 to 25 μm	> 25 µm
Lake	Month	Total	(1,000 X)	(400 X)	(100 X)
Long		2,700	2,400	340	16.2
Middle Quinsam	May	1,900	1,500	370	15.4
No Name	iviay	1,300	1,000	320	7.9
Lower Quinsam	1	1,700	1,300	390	1.2
Long		1,100	940	200	1.5
Middle Quinsam	1	980	760	220	0.9
No Name	Sept.	1,400	860	480	29.8
No Name Replicate	- σορι. -	1,500	1,000	450	28.1
Lower Quinsam		1,700	990	600	86.6
Long		2,000	1,800	190	0.4
Middle Quinsam	1	860	770	80	7.5
No Name	Oct.	1,600	1,370	260	1
No Name Replicate]	1,800	1,400	390	4.2
Lower Quinsam]	1,300	770	530	14.8

Table 1-25 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2018

	System, 2010			/mal \ a4 4 ma = -1 =	41-	
		Abundance (cells/mL) at 1 m depth				
			<5 µm	5 to 25 μm	>25 µm	
Lake	Month	Total	(1,000 X)	(400 X)	(100 X)	
Long		1,500	1,300	150	3.4	
Long—duplicate		1,300	1,100	140	4.8	
Middle Quinsam	May	1,000	920	110	0.4	
No Name		1,800	1,500	250	0.1	
Lower Quinsam		2,700	2,400	320	0.5	
Long		1,200	1,100	110	1.7	
Middle Quinsam		1,600	1,500	180	0.2	
No Name		1,400	1,200	270	2	
Lower Quinsam	August	2,300	680	1,600	13	
Lower Quinsam—replicate		3,400	1,100	2,300	6.6	
Long		9,200	2,500	210	6,500	
Middle Quinsam	November	2,100	1,700	360	0.04	
No Name	Moverniber	1,600	1,300	300	0.7	
Lower Quinsam		1,800	1,500	230	96	

Table 1-26 Phytoplankton Abundance (cells/mL) in the Quinsam Lakes System, 2019

		Abundance (cells/mL) at 1 m depth			
Lake	Month	Total	<5 μm (1,000 X)	5 to 25 μm (400 X)	>25 µm (100 X)
Long	1-May	2,400	1,900	430	1
Long (duplicate)	1-iviay	2,100	1,700	420	1.7
Middle Quinsam	2-May	320	260	60	1.2
No Name	1-May	740	440	300	0.1
Lower Quinsam	2-May	600	500	99	1.2
Long		2,000	1,700	300	0.5
Middle Quinsam	8-May	1,000	920	80	0.4
No Name		2,700	2,100	570	0.03
Lower Quinsam	1	2,100	1,800	310	11.9
Long		2,600	2,300	220	1.3
Middle Quinsam	1	1,800	1,600	220	0.7
No Name	30-Jul	2,400	2,100	350	4.9
No Name (duplicate)	30-Jul	2,200	1,800	370	9
Lower Quinsam	1	1,900	1,500	320	1
Long	Oct. 24	2,400	1,900	450	0.7
Middle Quinsam	OGI. 24	1,300	1,100	210	0.04

Table 1-27 Phytoplankton Abundance (cells/mL) in the Quinsam Lake System, 2020

		Abundance (cells/mL) at 1 m depth					
Lake	Date	Total	<5 μm (1,000 X)	5 to 25 μm (400 X)	>25 μm (100 X)		
Long		3,400	2,800	330	275		
Middle Quinsam	12-May	1,200	1,150	65	4.2		
No Name ¹		4,100	1,600	2,500	0.4		
Lower Quinsam	13-May	4,000	3,500	360	95		
Long		2,600	2,400	160	13		
Middle Quinsam	5-Aug	1,500	1,300	190	0.4		
Middle Quinsam replicate	o-/tag	1,400	1,200	200	0.5		
Long		3,200	3,000	200	2.6		
Long replicate	7-Oct	3,000	2,800	200	1.6		
Middle Quinsam		3,000	2,700	250	2.2		

NOTE:

^{1.} Dinobryon spp. counted at 400X rather than 100X due to high abundance

Phytoplankton Abundance (cells/mL) in the Quinsam Lake System, **Table 1-28** 2021

_		Abundance (cells/mL) at 1 m depth				
Lake	Date	Total	<5 μm (1,000 X)	5 to 25 μm (400 X)	>25 µm (100 X)	
Long		1,000	920	120	1.7	
Long (replicate)		1,200	1,100	120	0.7	
Middle Quinsam	4-May	2,200	2,100	120	0.1	
No Name ¹		1,200	990	220	0.2	
Lower Quinsam		1,300	1,100	180	1.8	
Long		1,000	830	190	0.9	
Long (replicate)	12-Jul	1,000	810	190	0.4	
Middle Quinsam		1,400	1000	390	0.2	
Long		2,100	1,900	190	0.4	
Middle Quinsam	6-Oct	2,200	2,000	200	12.6	
Middle Quinsam replicate)	0-061	2,200	2,000	230	11.4	
NOTE:		_	-	-		

Dinobryon spp. counted at 400X rather than 100X due to high abundance

Table 1-29 Phytoplankton Abundance (cells/mL) in the Quinsam Lake System, 2022

		Abundance (cells/mL) at 1 m depth				
Lake	Date	Total	<5 μm (1,000 X)	5 to 25 μm (400 X)	>25 µm (100 X)	
Long		1,400	1,300	83	2.4	
Middle Quinsam		1,800	1,700	70	0.5	
Middle Quinsam (replicate)	6-April, 7-April	1,800	1,700	65	0.5	
No Name	o-April, 7-April	1,500	1,400	88	7.8	
No Name (replicate)		1,800	1,700	100	4.4	
Lower Quinsam		1,600	1,500	54	0.6	
Long		1,700	1,500	170	0.9	
Middle Quinsam	3-May, 4-May	1,700	1,600	100	0.4	
No Name	3-iviay, 4-iviay	1,400	1,300	160	0.3	
Lower Quinsam		1,700	1,600	180	1.6	
Long		1,300	1,100	200	0.4	
Middle Quinsam	20-Jul	1,400	1,200	250	1.3	
Middle Quinsam (replicate)]	1,200	1,000	200	0.2	
Long (SEE NOTE)		1,700	1,500	170	2	
Long (replicate) (SEE NOTE)	12-Oct	1,500	1,300	180	0.1	
Middle Quinsam] [1,000	900	120	2	

NOTE It is possible that results for the two October Long Lake samples were affected by an issue with the laboratory. Subsamples of the preserved sample had been removed for chemical analysis, and it is not known whether the sample mixing methods prior to subsampling were the same as are followed for the phytoplankton samples.

Table 1-30

Phytoplankton Abundance (cells/mL) in the Quinsam Lake System, 2023

		Abundance (cells/mL) at 1 m depth				
Lake	Date	Total	<5 μm (1,000 X)	5 to 25 μm (400 X)	>25 μm (100 X)	
Long		2,800	2,700	170	2	
Middle Quinsam		1,100	940	120	1.1	
No Name	3-May, 4-May	1,900	1,800	160	0.5	
Lower Quinsam		1,300	1,100	180	22	
Lower Quinsam (replicate)		1,200	1,100	120	7	
Long		960	850	120	1.1	
Long (replicate)	18-Jul	870	740	130	2.3	
Middle Quinsam		1,200	530	710	0.3	
Long		1,100	990	140	6.7	
Middle Quinsam	10-Oct	1,300	1,200	150	25	
Middle Quinsam (replicate)		1,400	1,200	140	28	

June 28, 2024 Atikin Hehn Page B.1

Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07, CNH376-07, CNH377-07, CNH446-07; Job Numbers C432983, C432974, C432979, C432992) Reference:

Attachment B Species Composition Data: May 2024

Quinsam Lake Phytoplankton - 8 May 2024 Long Lake 1 m (CNH417-07, Job C432983) 27 ml sample settled

Total Cells Counted 1,042
Total Cells Per mL 1,800

	Number	Cells
	Counted	per mL
1000X magnification - 50 fields		-
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	59	1062
Ochromonas/Chromulina spp. (4-5 um)	14	252
Ochromonas/Chromulina spp. (6-7 um)	12	216
Pseudokephyrion sp.	2	36
Chrysochromulina cf. parva	4	72
TOTAL	91	1638
400X magnification - 3 strips		
CHRYSOPHYCEAE		
Chrysolikos sp.	1	1
Diceras chodatii	2	1
Dinobryon sp.	23	13
Mallomonas spp.	1	1
Ochromonas spp. (8-10 um)	119	67
unidentified cyst	1	1
BACILLARIOPHYCEAE		
Achnanthes spp.	4	2
Cyclotella cf. stelligera/ocellata	3	2
Gomphonema sp. (30 um)	1	1
Melosira italica (fil)	5	3
Synedra sp. (small)	1	1
CHLOROPHYCEAE		
Oocystis sp. (cells+cols)	1	1
Gloeocystis sp. (cells + cols)	6	3
DINOPHYCEAE		
Gymnodinium sp.	1	1
CRYPTOPHYCEAE		
Cryptomonas spp.	23	13
Rhodomonas minuta	21	12
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	21	12
TOTAL	234	133
100X magnification - half sample		
CHRYSOPHYCEAE		
Dinobryon cylindricum (110 col, 711 cells)	711	56.9
BACILLARIOPHYCEAE		
Synedra radians	3	0.24
Synedra ulna	3	0.24
TOTAL	717	57.4

1 of 5

Quinsam Lake Phytoplankton - 8 May 2024 Middle Quinsam Lake 1 m (CNH334-07, Job C432974) 27 ml sample settled

Total Cells Counted 276
Total Cells Per mL 1,400

	Number	Cells
	Counted	per mL
1000X magnification - 50 fields		
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	44	792
Ochromonas/Chromulina spp. (4-5 um)	18	324
Ochromonas/Chromulina spp. (6-7 um)	6	108
Pseudokephyrion sp.	2	36
Chrysochromulina parva	1	18
TOTAL	71	1278
400V magnification 2 string		
400X magnification - 2 strips CHRYSOPHYCEAE		
	20	47
Dinobryon sp.	20	17
Ochromonas spp. (8-10 um)	142	121
BACILLARIOPHYCEAE		
Cyclotella glomerata (cells + cols)	2	2
Cyclotella cf. stelligera/ocellata	3	3
Melosira italica (fil)	1	1
Navicula sp. (40 um)	1	1
DINOPHYCEAE		
Peridinium sp.	1	1
CRYPTOPHYCEAE		
Cryptomonas spp.	5	4
Rhodomonas minuta	17	14
TOTAL	192	163
100X magnification - whole sample		
CHRYSOPHYCEAE		
Dinobryon cylindricum (1 col, 2 cells)	2	0.1
BACILLARIOPHYCEAE	_	
Navicula sp. (60 um)	1	0.04
Synedra radians	5	0.2
Synedra ulna	4	0.16
CHLOROPHYCEAE		
Closteriopsis sp.	1	0.04
TOTAL	13	0.5

2 of 5

Quinsam Lake Phytoplankton - 8 May 2024 No Name Lake 1 m (CNH376-07, Job C432979) 27 ml sample settled

Total Cells Counted 501
Total Cells Per mL 990

	Number	Cells
	Counted	per mL
1000X magnification - 100 fields		-
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-A13 um)	50	450
Ochromonas/Chromulina spp. (4-5 um)	22	198
Ochromonas/Chromulina spp. (6-7 um)	15	135
Pseudokephyrion sp.	4	36
TOTAL	91	819
400X magnification - 4 strips		
CHRYSOPHYCEAE		
Chrysococcus paludosa (cells+cols)	1	0.4
Diceras chodati	1	0.4
Mallomonas spp.	53	23
Ochromonas spp. (8-10 um)	82	35
BACILLARIOPHYCEAE		
Achnanthes sp.	12	5
Melosira italica (fil)	10	4
Navicula spp. (25 um)	3	1
Synedra sp. (small)	3	1
CHLOROPHYCEAE		
Gloeocystis sp. (cells)	22	9
Oocystis sp. (cells + cols)	80	34
CRYPTOPHYCEAE		
Cryptomonas spp.	39	17
Rhodomonas minuta	72	31
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	30	13
TOTAL	408	173
1004		
100X magnification - whole sample		
CHLOROPHYCEAE		
Botryococcus braunii (cols)	1	0.04
Closterium sp.	1	0.04
TOTAL	2	0.1

3 of 5

Quinsam Lake Phytoplankton - 8 May 2024 No Name Lake 1 m Replicate (CNH377-07, Job C432979) 27 ml sample settled

Total Cells Counted 509
Total Cells Per mL 1,000

	Number Counted	Cells
		per mL
1000X magnification - 100 fields		
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-A13 um)	42	378
Ochromonas/Chromulina spp. (4-5 um)	32	288
Ochromonas/Chromulina spp. (6-7 um)	13	117
Pseudokephyrion sp.	5	45
TOTAL	92	828
400X magnification - 4 strips		
CHRYSOPHYCEAE		
Mallomonas spp.	73	31
Ochromonas spp. (8-10 um)	84	36
BACILLARIOPHYCEAE		
Achnanthes sp.	13	6
Melosira italica (fil)	10	4
Navicula spp. (25 um)	2	1
CHLOROPHYCEAE		
Gloeocystis sp. (cells)	14	6
Schroderia setigera	2	1
Oocystis sp. (cells + cols)	70	30
CRYPTOPHYCEAE		
Cryptomonas spp.	40	17
Rhodomonas minuta	83	35
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	26	11
TOTAL	417	177
100X magnification - whole sample		
nothing visible		
TOTAL	0	0

Quinsam Lake Phytoplankton - 8 May 2023 Lower Quinsam Lake 1 m (CNH446-07, Job C432992) 27 ml sample settled

Total Cells Counted 745
Total Cells Per mL 3,500

	Number Counted	Cells per mL
1000X magnification - 25 fields		•
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	40	1440
Ochromonas/Chromulina spp. (4-5 um)	22	792
Ochromonas/Chromulina spp. (6-7 um)	12	432
Pseudokephyrion sp.	6	216
Chrysochromulina parva	2	72
CHLOROPHYCEAE	_	
Oocystis sp. (5 x 3 um)	3	
TOTAL	85	2952
400X magnification - 1 strip		
CHRYSOPHYCEAE		
Chrysolikos sp.	2	3
Dinobryon sp.	33	56
Mallomonas sp.	1	2
Ochromonas spp. (8-10 um)	148	252
BACILLARIOPHYCEAE		
Achnanthes spp.	2	3
Cyclotella glomerata (cells + cols)	3	5
Melosira sp. (fil)	1	2
Synedra sp. (small)	1	2
CHLOROPHYCEAE		
Gloeocystis sp. (cols + cells)	3	5
Oocystis sp. (cells+cols)	1	2
Scenedesmus sp. (col)		1
Tetraedron sp.	1	
Tetraedron minimum	5	9
DINOPHYCEAE		
Gymnodinium sp.	18	31
Peeridinium sp.	2	3
CRYPTOPHYCEAE		
Cryptomonas spp.	48	82
Rhodomonas minuta	25	43
TOTAL	294	499
100X magnification - half sample		
CHRYSOPHYCEAE		
Dinobryon bavaricum (14 col, 23 cells)	23	1.8
Dinobryon cylindricum (4 cols, 36 cells)	36	2.9
Dinobryon sociale (50 cols, 298 cells)	298	23.8
BACILLARIOPHYCEAE	290	23.0
	E	0.4
Asterionella formosa (1 col, 5 cells)	5	0.4
Synedra ulna	3	0.2
Synedra radians Table Harin form that (4 and 2 and 2)	57	4.6
Tabellaria fenestrata (1 col, 3 cells)	3	0.2
TOTAL	366	29

June 28, 2024 Atikin Hehn Page B.1

Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07, CNH376-07, CNH377-07, CNH446-07; Job Numbers C432983, C432974, C432979, C432992) Reference:

Attachment B Species Composition Data: May 2024

Quinsam Lake Phytoplankton - 8 May 2024 Long Lake 1 m (CNH417-07, Job C432983) 27 ml sample settled

Total Cells Counted 1,042
Total Cells Per mL 1,800

	Number	Cells
	Counted	per mL
1000X magnification - 50 fields		-
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	59	1062
Ochromonas/Chromulina spp. (4-5 um)	14	252
Ochromonas/Chromulina spp. (6-7 um)	12	216
Pseudokephyrion sp.	2	36
Chrysochromulina cf. parva	4	72
TOTAL	91	1638
400X magnification - 3 strips		
CHRYSOPHYCEAE		
Chrysolikos sp.	1	1
Diceras chodatii	2	1
Dinobryon sp.	23	13
Mallomonas spp.	1	1
Ochromonas spp. (8-10 um)	119	67
unidentified cyst	1	1
BACILLARIOPHYCEAE		
Achnanthes spp.	4	2
Cyclotella cf. stelligera/ocellata	3	2
Gomphonema sp. (30 um)	1	1
Melosira italica (fil)	5	3
Synedra sp. (small)	1	1
CHLOROPHYCEAE		
Oocystis sp. (cells+cols)	1	1
Gloeocystis sp. (cells + cols)	6	3
DINOPHYCEAE		
Gymnodinium sp.	1	1
CRYPTOPHYCEAE		
Cryptomonas spp.	23	13
Rhodomonas minuta	21	12
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	21	12
TOTAL	234	133
100X magnification - half sample		
CHRYSOPHYCEAE		
Dinobryon cylindricum (110 col, 711 cells)	711	56.9
BACILLARIOPHYCEAE		
Synedra radians	3	0.24
Synedra ulna	3	0.24
TOTAL	717	57.4

Quinsam Lake Phytoplankton - 8 May 2024 Middle Quinsam Lake 1 m (CNH334-07, Job C432974) 27 ml sample settled

Total Cells Counted 276
Total Cells Per mL 1,400

	Number Counted	Cells
		per mL
1000X magnification - 50 fields		
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	44	792
Ochromonas/Chromulina spp. (4-5 um)	18	324
Ochromonas/Chromulina spp. (6-7 um)	6	108
Pseudokephyrion sp.	2	36
Chrysochromulina parva	1	18
TOTAL	71	1278
400V magnification 2 string		
400X magnification - 2 strips CHRYSOPHYCEAE		
	20	47
Dinobryon sp.	20	17
Ochromonas spp. (8-10 um)	142	121
BACILLARIOPHYCEAE		
Cyclotella glomerata (cells + cols)	2	2
Cyclotella cf. stelligera/ocellata	3	3
Melosira italica (fil)	1	1
Navicula sp. (40 um)	1	1
DINOPHYCEAE		
Peridinium sp.	1	1
CRYPTOPHYCEAE		
Cryptomonas spp.	5	4
Rhodomonas minuta	17	14
TOTAL	192	163
100X magnification - whole sample		
CHRYSOPHYCEAE		
Dinobryon cylindricum (1 col, 2 cells)	2	0.1
BACILLARIOPHYCEAE	_	
Navicula sp. (60 um)	1	0.04
Synedra radians	5	0.2
Synedra ulna	4	0.16
CHLOROPHYCEAE		
Closteriopsis sp.	1	0.04
TOTAL	13	0.5

Quinsam Lake Phytoplankton - 8 May 2024 No Name Lake 1 m (CNH376-07, Job C432979) 27 ml sample settled

Total Cells Counted 501
Total Cells Per mL 990

	Number	Cells
	Counted	per mL
1000X magnification - 100 fields		-
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-A13 um)	50	450
Ochromonas/Chromulina spp. (4-5 um)	22	198
Ochromonas/Chromulina spp. (6-7 um)	15	135
Pseudokephyrion sp.	4	36
TOTAL	91	819
400X magnification - 4 strips		
CHRYSOPHYCEAE		
Chrysococcus paludosa (cells+cols)	1	0.4
Diceras chodati	1	0.4
Mallomonas spp.	53	23
Ochromonas spp. (8-10 um)	82	35
BACILLARIOPHYCEAE		
Achnanthes sp.	12	5
Melosira italica (fil)	10	4
Navicula spp. (25 um)	3	1
Synedra sp. (small)	3	1
CHLOROPHYCEAE		
Gloeocystis sp. (cells)	22	9
Oocystis sp. (cells + cols)	80	34
CRYPTOPHYCEAE		
Cryptomonas spp.	39	17
Rhodomonas minuta	72	31
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	30	13
TOTAL	408	173
1004		
100X magnification - whole sample		
CHLOROPHYCEAE		
Botryococcus braunii (cols)	1	0.04
Closterium sp.	1	0.04
TOTAL	2	0.1

Quinsam Lake Phytoplankton - 8 May 2024 No Name Lake 1 m Replicate (CNH377-07, Job C432979) 27 ml sample settled

Total Cells Counted 509
Total Cells Per mL 1,000

	Number Counted	Cells
		per mL
1000X magnification - 100 fields		
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-A13 um)	42	378
Ochromonas/Chromulina spp. (4-5 um)	32	288
Ochromonas/Chromulina spp. (6-7 um)	13	117
Pseudokephyrion sp.	5	45
TOTAL	92	828
400X magnification - 4 strips		
CHRYSOPHYCEAE		
Mallomonas spp.	73	31
Ochromonas spp. (8-10 um)	84	36
BACILLARIOPHYCEAE		
Achnanthes sp.	13	6
Melosira italica (fil)	10	4
Navicula spp. (25 um)	2	1
CHLOROPHYCEAE		
Gloeocystis sp. (cells)	14	6
Schroderia setigera	2	1
Oocystis sp. (cells + cols)	70	30
CRYPTOPHYCEAE		
Cryptomonas spp.	40	17
Rhodomonas minuta	83	35
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	26	11
TOTAL	417	177
100X magnification - whole sample		
nothing visible		
TOTAL	0	0

Quinsam Lake Phytoplankton - 8 May 2023 Lower Quinsam Lake 1 m (CNH446-07, Job C432992) 27 ml sample settled

Total Cells Counted 745
Total Cells Per mL 3,500

	Number Counted	Cells per mL
1000X magnification - 25 fields		•
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	40	1440
Ochromonas/Chromulina spp. (4-5 um)	22	792
Ochromonas/Chromulina spp. (6-7 um)	12	432
Pseudokephyrion sp.	6	216
Chrysochromulina parva	2	72
CHLOROPHYCEAE	_	
Oocystis sp. (5 x 3 um)	3	
TOTAL	85	2952
400X magnification - 1 strip		
CHRYSOPHYCEAE		
Chrysolikos sp.	2	3
Dinobryon sp.	33	56
Mallomonas sp.	1	2
Ochromonas spp. (8-10 um)	148	252
BACILLARIOPHYCEAE		
Achnanthes spp.	2	3
Cyclotella glomerata (cells + cols)	3	5
Melosira sp. (fil)	1	2
Synedra sp. (small)	1	2
CHLOROPHYCEAE		
Gloeocystis sp. (cols + cells)	3	5
Oocystis sp. (cells+cols)	1	2
Scenedesmus sp. (col)		1
Tetraedron sp.	1	
Tetraedron minimum	5	9
DINOPHYCEAE		
Gymnodinium sp.	18	31
Peeridinium sp.	2	3
CRYPTOPHYCEAE		
Cryptomonas spp.	48	82
Rhodomonas minuta	25	43
TOTAL	294	499
100X magnification - half sample		
CHRYSOPHYCEAE		
Dinobryon bavaricum (14 col, 23 cells)	23	1.8
Dinobryon cylindricum (4 cols, 36 cells)	36	2.9
Dinobryon sociale (50 cols, 298 cells)	298	23.8
BACILLARIOPHYCEAE	290	23.0
	E	0.4
Asterionella formosa (1 col, 5 cells)	5	0.4
Synedra ulna	3	0.2
Synedra radians Table Harin form that (4 and 2 and 2)	57	4.6
Tabellaria fenestrata (1 col, 3 cells)	3	0.2
TOTAL	366	29

June 28, 2024 Atikin Hehn Page B.1

Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07, CNH376-07, CNH377-07, CNH446-07; Job Numbers C432983, C432974, C432979, C432992) Reference:

Attachment B Species Composition Data: May 2024

Quinsam Lake Phytoplankton - 8 May 2024 Long Lake 1 m (CNH417-07, Job C432983) 27 ml sample settled

Total Cells Counted 1,042
Total Cells Per mL 1,800

	Number	Cells
	Counted	per mL
1000X magnification - 50 fields		-
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	59	1062
Ochromonas/Chromulina spp. (4-5 um)	14	252
Ochromonas/Chromulina spp. (6-7 um)	12	216
Pseudokephyrion sp.	2	36
Chrysochromulina cf. parva	4	72
TOTAL	91	1638
400X magnification - 3 strips		
CHRYSOPHYCEAE		
Chrysolikos sp.	1	1
Diceras chodatii	2	1
Dinobryon sp.	23	13
Mallomonas spp.	1	1
Ochromonas spp. (8-10 um)	119	67
unidentified cyst	1	1
BACILLARIOPHYCEAE		
Achnanthes spp.	4	2
Cyclotella cf. stelligera/ocellata	3	2
Gomphonema sp. (30 um)	1	1
Melosira italica (fil)	5	3
Synedra sp. (small)	1	1
CHLOROPHYCEAE		
Oocystis sp. (cells+cols)	1	1
Gloeocystis sp. (cells + cols)	6	3
DINOPHYCEAE		
Gymnodinium sp.	1	1
CRYPTOPHYCEAE		
Cryptomonas spp.	23	13
Rhodomonas minuta	21	12
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	21	12
TOTAL	234	133
100X magnification - half sample		
CHRYSOPHYCEAE		
Dinobryon cylindricum (110 col, 711 cells)	711	56.9
BACILLARIOPHYCEAE		
Synedra radians	3	0.24
Synedra ulna	3	0.24
TOTAL	717	57.4

Quinsam Lake Phytoplankton - 8 May 2024 Middle Quinsam Lake 1 m (CNH334-07, Job C432974) 27 ml sample settled

Total Cells Counted 276
Total Cells Per mL 1,400

	Number Counted	Cells
		per mL
1000X magnification - 50 fields		
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	44	792
Ochromonas/Chromulina spp. (4-5 um)	18	324
Ochromonas/Chromulina spp. (6-7 um)	6	108
Pseudokephyrion sp.	2	36
Chrysochromulina parva	1	18
TOTAL	71	1278
400V magnification 2 string		
400X magnification - 2 strips CHRYSOPHYCEAE		
	20	47
Dinobryon sp.	20	17
Ochromonas spp. (8-10 um)	142	121
BACILLARIOPHYCEAE		
Cyclotella glomerata (cells + cols)	2	2
Cyclotella cf. stelligera/ocellata	3	3
Melosira italica (fil)	1	1
Navicula sp. (40 um)	1	1
DINOPHYCEAE		
Peridinium sp.	1	1
CRYPTOPHYCEAE		
Cryptomonas spp.	5	4
Rhodomonas minuta	17	14
TOTAL	192	163
100X magnification - whole sample		
CHRYSOPHYCEAE		
Dinobryon cylindricum (1 col, 2 cells)	2	0.1
BACILLARIOPHYCEAE	_	
Navicula sp. (60 um)	1	0.04
Synedra radians	5	0.2
Synedra ulna	4	0.16
CHLOROPHYCEAE		
Closteriopsis sp.	1	0.04
TOTAL	13	0.5

Quinsam Lake Phytoplankton - 8 May 2024 No Name Lake 1 m (CNH376-07, Job C432979) 27 ml sample settled

Total Cells Counted 501
Total Cells Per mL 990

	Number	Cells
	Counted	per mL
1000X magnification - 100 fields		-
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-A13 um)	50	450
Ochromonas/Chromulina spp. (4-5 um)	22	198
Ochromonas/Chromulina spp. (6-7 um)	15	135
Pseudokephyrion sp.	4	36
TOTAL	91	819
400X magnification - 4 strips		
CHRYSOPHYCEAE		
Chrysococcus paludosa (cells+cols)	1	0.4
Diceras chodati	1	0.4
Mallomonas spp.	53	23
Ochromonas spp. (8-10 um)	82	35
BACILLARIOPHYCEAE		
Achnanthes sp.	12	5
Melosira italica (fil)	10	4
Navicula spp. (25 um)	3	1
Synedra sp. (small)	3	1
CHLOROPHYCEAE		
Gloeocystis sp. (cells)	22	9
Oocystis sp. (cells + cols)	80	34
CRYPTOPHYCEAE		
Cryptomonas spp.	39	17
Rhodomonas minuta	72	31
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	30	13
TOTAL	408	173
1004		
100X magnification - whole sample		
CHLOROPHYCEAE		
Botryococcus braunii (cols)	1	0.04
Closterium sp.	1	0.04
TOTAL	2	0.1

Quinsam Lake Phytoplankton - 8 May 2024 No Name Lake 1 m Replicate (CNH377-07, Job C432979) 27 ml sample settled

Total Cells Counted 509
Total Cells Per mL 1,000

	Number Counted	Cells
		per mL
1000X magnification - 100 fields		
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-A13 um)	42	378
Ochromonas/Chromulina spp. (4-5 um)	32	288
Ochromonas/Chromulina spp. (6-7 um)	13	117
Pseudokephyrion sp.	5	45
TOTAL	92	828
400X magnification - 4 strips		
CHRYSOPHYCEAE		
Mallomonas spp.	73	31
Ochromonas spp. (8-10 um)	84	36
BACILLARIOPHYCEAE		
Achnanthes sp.	13	6
Melosira italica (fil)	10	4
Navicula spp. (25 um)	2	1
CHLOROPHYCEAE		
Gloeocystis sp. (cells)	14	6
Schroderia setigera	2	1
Oocystis sp. (cells + cols)	70	30
CRYPTOPHYCEAE		
Cryptomonas spp.	40	17
Rhodomonas minuta	83	35
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	26	11
TOTAL	417	177
100X magnification - whole sample		
nothing visible		
TOTAL	0	0

Quinsam Lake Phytoplankton - 8 May 2023 Lower Quinsam Lake 1 m (CNH446-07, Job C432992) 27 ml sample settled

Total Cells Counted 745
Total Cells Per mL 3,500

	Number Counted	Cells per mL
1000X magnification - 25 fields		•
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	40	1440
Ochromonas/Chromulina spp. (4-5 um)	22	792
Ochromonas/Chromulina spp. (6-7 um)	12	432
Pseudokephyrion sp.	6	216
Chrysochromulina parva	2	72
CHLOROPHYCEAE	_	
Oocystis sp. (5 x 3 um)	3	
TOTAL	85	2952
400X magnification - 1 strip		
CHRYSOPHYCEAE		
Chrysolikos sp.	2	3
Dinobryon sp.	33	56
Mallomonas sp.	1	2
Ochromonas spp. (8-10 um)	148	252
BACILLARIOPHYCEAE		
Achnanthes spp.	2	3
Cyclotella glomerata (cells + cols)	3	5
Melosira sp. (fil)	1	2
Synedra sp. (small)	1	2
CHLOROPHYCEAE		
Gloeocystis sp. (cols + cells)	3	5
Oocystis sp. (cells+cols)	1	2
Scenedesmus sp. (col)		1
Tetraedron sp.	1	
Tetraedron minimum	5	9
DINOPHYCEAE		
Gymnodinium sp.	18	31
Peeridinium sp.	2	3
CRYPTOPHYCEAE		
Cryptomonas spp.	48	82
Rhodomonas minuta	25	43
TOTAL	294	499
100X magnification - half sample		
CHRYSOPHYCEAE		
Dinobryon bavaricum (14 col, 23 cells)	23	1.8
Dinobryon cylindricum (4 cols, 36 cells)	36	2.9
Dinobryon sociale (50 cols, 298 cells)	298	23.8
BACILLARIOPHYCEAE	290	23.0
	E	0.4
Asterionella formosa (1 col, 5 cells)	5	0.4
Synedra ulna	3	0.2
Synedra radians Table Harin form that (4 and 2 and 2)	57	4.6
Tabellaria fenestrata (1 col, 3 cells)	3	0.2
TOTAL	366	29

June 28, 2024 Atikin Hehn Page B.1

Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07, CNH376-07, CNH377-07, CNH446-07; Job Numbers C432983, C432974, C432979, C432992) Reference:

Attachment B Species Composition Data: May 2024

Quinsam Lake Phytoplankton - 8 May 2024 Long Lake 1 m (CNH417-07, Job C432983) 27 ml sample settled

Total Cells Counted 1,042
Total Cells Per mL 1,800

	Number	Cells
	Counted	per mL
1000X magnification - 50 fields		-
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	59	1062
Ochromonas/Chromulina spp. (4-5 um)	14	252
Ochromonas/Chromulina spp. (6-7 um)	12	216
Pseudokephyrion sp.	2	36
Chrysochromulina cf. parva	4	72
TOTAL	91	1638
400X magnification - 3 strips		
CHRYSOPHYCEAE		
Chrysolikos sp.	1	1
Diceras chodatii	2	1
Dinobryon sp.	23	13
Mallomonas spp.	1	1
Ochromonas spp. (8-10 um)	119	67
unidentified cyst	1	1
BACILLARIOPHYCEAE		
Achnanthes spp.	4	2
Cyclotella cf. stelligera/ocellata	3	2
Gomphonema sp. (30 um)	1	1
Melosira italica (fil)	5	3
Synedra sp. (small)	1	1
CHLOROPHYCEAE		
Oocystis sp. (cells+cols)	1	1
Gloeocystis sp. (cells + cols)	6	3
DINOPHYCEAE		
Gymnodinium sp.	1	1
CRYPTOPHYCEAE		
Cryptomonas spp.	23	13
Rhodomonas minuta	21	12
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	21	12
TOTAL	234	133
100X magnification - half sample		
CHRYSOPHYCEAE		
Dinobryon cylindricum (110 col, 711 cells)	711	56.9
BACILLARIOPHYCEAE		
Synedra radians	3	0.24
Synedra ulna	3	0.24
TOTAL	717	57.4

Quinsam Lake Phytoplankton - 8 May 2024 Middle Quinsam Lake 1 m (CNH334-07, Job C432974) 27 ml sample settled

Total Cells Counted 276
Total Cells Per mL 1,400

	Number	Cells
	Counted	per mL
1000X magnification - 50 fields		
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	44	792
Ochromonas/Chromulina spp. (4-5 um)	18	324
Ochromonas/Chromulina spp. (6-7 um)	6	108
Pseudokephyrion sp.	2	36
Chrysochromulina parva	1	18
TOTAL	71	1278
400V magnification 2 string		
400X magnification - 2 strips CHRYSOPHYCEAE		
	20	47
Dinobryon sp.	20	17
Ochromonas spp. (8-10 um)	142	121
BACILLARIOPHYCEAE		
Cyclotella glomerata (cells + cols)	2	2
Cyclotella cf. stelligera/ocellata	3	3
Melosira italica (fil)	1	1
Navicula sp. (40 um)	1	1
DINOPHYCEAE		
Peridinium sp.	1	1
CRYPTOPHYCEAE		
Cryptomonas spp.	5	4
Rhodomonas minuta	17	14
TOTAL	192	163
100X magnification - whole sample		
CHRYSOPHYCEAE		
Dinobryon cylindricum (1 col, 2 cells)	2	0.1
BACILLARIOPHYCEAE	_	
Navicula sp. (60 um)	1	0.04
Synedra radians	5	0.2
Synedra ulna	4	0.16
CHLOROPHYCEAE		
Closteriopsis sp.	1	0.04
TOTAL	13	0.5

Quinsam Lake Phytoplankton - 8 May 2024 No Name Lake 1 m (CNH376-07, Job C432979) 27 ml sample settled

Total Cells Counted 501
Total Cells Per mL 990

	Number	Cells
	Counted	per mL
1000X magnification - 100 fields		-
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-A13 um)	50	450
Ochromonas/Chromulina spp. (4-5 um)	22	198
Ochromonas/Chromulina spp. (6-7 um)	15	135
Pseudokephyrion sp.	4	36
TOTAL	91	819
400X magnification - 4 strips		
CHRYSOPHYCEAE		
Chrysococcus paludosa (cells+cols)	1	0.4
Diceras chodati	1	0.4
Mallomonas spp.	53	23
Ochromonas spp. (8-10 um)	82	35
BACILLARIOPHYCEAE		
Achnanthes sp.	12	5
Melosira italica (fil)	10	4
Navicula spp. (25 um)	3	1
Synedra sp. (small)	3	1
CHLOROPHYCEAE		
Gloeocystis sp. (cells)	22	9
Oocystis sp. (cells + cols)	80	34
CRYPTOPHYCEAE		
Cryptomonas spp.	39	17
Rhodomonas minuta	72	31
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	30	13
TOTAL	408	173
1004		
100X magnification - whole sample		
CHLOROPHYCEAE		
Botryococcus braunii (cols)	1	0.04
Closterium sp.	1	0.04
TOTAL	2	0.1

Quinsam Lake Phytoplankton - 8 May 2024 No Name Lake 1 m Replicate (CNH377-07, Job C432979) 27 ml sample settled

Total Cells Counted 509
Total Cells Per mL 1,000

	Number	Cells
	Counted	per mL
1000X magnification - 100 fields		
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-A13 um)	42	378
Ochromonas/Chromulina spp. (4-5 um)	32	288
Ochromonas/Chromulina spp. (6-7 um)	13	117
Pseudokephyrion sp.	5	45
TOTAL	92	828
400X magnification - 4 strips		
CHRYSOPHYCEAE		
Mallomonas spp.	73	31
Ochromonas spp. (8-10 um)	84	36
BACILLARIOPHYCEAE		
Achnanthes sp.	13	6
Melosira italica (fil)	10	4
Navicula spp. (25 um)	2	1
CHLOROPHYCEAE		
Gloeocystis sp. (cells)	14	6
Schroderia setigera	2	1
Oocystis sp. (cells + cols)	70	30
CRYPTOPHYCEAE		
Cryptomonas spp.	40	17
Rhodomonas minuta	83	35
CYANOPHYCEAE		
Dactylococcopsis acicularis (cols)	26	11
TOTAL	417	177
100X magnification - whole sample		
nothing visible		
TOTAL	0	0

Quinsam Lake Phytoplankton - 8 May 2023 Lower Quinsam Lake 1 m (CNH446-07, Job C432992) 27 ml sample settled

Total Cells Counted 745
Total Cells Per mL 3,500

	Number Counted	Cells per mL
1000X magnification - 25 fields		•
CHRYSOPHYCEAE		
Ochromonas/Chromulina spp. (2-3 um)	40	1440
Ochromonas/Chromulina spp. (4-5 um)	22	792
Ochromonas/Chromulina spp. (6-7 um)	12	432
Pseudokephyrion sp.	6	216
Chrysochromulina parva	2	72
CHLOROPHYCEAE	_	
Oocystis sp. (5 x 3 um)	3	
TOTAL	85	2952
400X magnification - 1 strip		
CHRYSOPHYCEAE		
Chrysolikos sp.	2	3
Dinobryon sp.	33	56
Mallomonas sp.	1	2
Ochromonas spp. (8-10 um)	148	252
BACILLARIOPHYCEAE		
Achnanthes spp.	2	3
Cyclotella glomerata (cells + cols)	3	5
Melosira sp. (fil)	1	2
Synedra sp. (small)	1	2
CHLOROPHYCEAE		
Gloeocystis sp. (cols + cells)	3	5
Oocystis sp. (cells+cols)	1	2
Scenedesmus sp. (col)		1
Tetraedron sp.	1	
Tetraedron minimum	5	9
DINOPHYCEAE		
Gymnodinium sp.	18	31
Peeridinium sp.	2	3
CRYPTOPHYCEAE		
Cryptomonas spp.	48	82
Rhodomonas minuta	25	43
TOTAL	294	499
100X magnification - half sample		
CHRYSOPHYCEAE		
Dinobryon bavaricum (14 col, 23 cells)	23	1.8
Dinobryon cylindricum (4 cols, 36 cells)	36	2.9
Dinobryon sociale (50 cols, 298 cells)	298	23.8
BACILLARIOPHYCEAE	290	23.0
	E	0.4
Asterionella formosa (1 col, 5 cells)	5	0.4
Synedra ulna	3	0.2
Synedra radians Table Harin form that (4 and 2 and 2)	57	4.6
Tabellaria fenestrata (1 col, 3 cells)	3	0.2
TOTAL	366	29

June 28, 2024 Atikin Hehn Page C.1

Quinsam Lakes Phytoplankton, May 2024 (Sample Reference CNH417-07, CNH334-07, CNH376-07, CNH377-07, CNH446-07; Job Numbers C432983, C432974, C432979, C432992) Reference:

Attachment C Chain of Custody: May 2024

Sent To: Stantec Consulting Ltd. Suite 500 4730 Kingsway Burnaby, BC, VSH 0C6 Tel: (604) 436-3014

CHAIN OF CUSTODY RECORD FOR SUBCONTRACTED WORK

Page 01 of 01

COC # CA32974-VSTA-01-01

	REPORT INFORMATION						_			ANALYSIS	REQUES	TED		T			
	Company: Bureau Veritas Lat	boratories												T			7
	Address: 4606 Canada Way,	Burnaby, British	Columbia, V5G	3 1K5													
1	Contact Name: Atikin Hehn						1										
1	Email: Atikin.Hehn@burea	uveritas.com, Cu:	stomersolution	nswest@bu	reauverita	as.con											1
P	Phone:						O Pu										
81	V Labs Project #: C432974						ounta										1
1	SAMPLE ID	MATRIX	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	SAMPLE R INITIALS	E	gae Species Co								ADI	DITIONAL SAME	PLE INFORMATION
1	CNH334-MQLI-8MAY24-M	WATER	2024/05/08		KR	1	X								(P: 07)		
3																	
4																	
5																	
1																	
1																	
-																	
ATOR	YCRITERIA																
ATURY	LATIENIA		CIAL INSTRUC														
		Ple	e inform Burea ase return a co	u Veritas imr	nediately if m with the	you a repor	re not t.	accredite	d for the	requeste	test(s)	or the hol	d time is a	pproachir	rg.		Rush Require
		COOL	ER ID:														
esent	YES NO 1 2	3		YES	NO		1			COO	ER ID:						Date Required
act resent	Temp: (°C)	Custody	y Seal Present y Seal Intact Media Present		Т	emp: (°C)				Custo	dy Seal P	ntact	YES	Te	mp:	2 3	Please inform us if ru charges will be incurr
BY: (9	HOME FEINZH	DATE: (YYYY/MI	M/DD) ITI	ME: (HH:MI	M) RE	CEIVE	ED BY	: (SIGN &	DOINT	Coolir	R Media	Present					
40	Blely)	20247/05/10	CONTRACTOR DESCRIPTION OF THE PERSON NAMED IN	:00	1.	L	1	Me	PRINT)				DAT	E: (YYYY/	MM/DD)	TIME: (HH:N	
11					4	1	11	MI		40)			7	67244	05/22	3pn	

Sent To: Stantec Consulting Ltd. Suite S00 4730 Kingsway Burnaby, BC, V5H 0C6 Tel: (604) 436-3014

CHAIN OF CUSTODY RECORD FOR SUBCONTRACTED WORK

Page 01 of 01

COC# C432992-VSTA-01-01

ID: COOLER ID: VES NO Jessent Temp: VES NO Temp: Temp: Please return a copy of this form with the report.** COOLER ID: Outputs Seal Present Temp: Please inform with the report.**		REPORT INFORMATION															
Address: 4606 Canada Way, Burnaby, British Columbia, VSG 1KS Contact Name: Acikin Hehn Email: Askin Hehn@bureauveritas.com, Customersolutionswest@bureauveritas.com Phone: IV Valle Minglast B: C432992 SAAMPLE ID MATRIX DATE TIME SAMPLED SAM		Company: Bureau Veritas Labor	ratories						Af	VALYSIS	S REQUESTED						
College In Temp: College Present Presen			Control of the last of the las	olumbia, VSG	1K5												
BY Labs Project 8 C432992 # SAMPLE ID MATRIX SAMPLED MATRIX SAMPLED MINITIALS SAM																	
BY Labs Project & C432992 # SAMPLE ID MATRIX SAMPLED	1	Email: Atikin.Hehn@bureaux	pritas com Cont					1									
# SAMPLE ID MATRIX SAMPLED MATRIX SAMPLED MATRIX SAMPLED ON SA	10	Phone:	eritas.com, cust	omersolution:	swest@bur	eauveritas	.com	Subc									
AMPLED SAMPLED HYDRANION OF THE SAMPLED BY: COOLER ID: COOLER ID: COOLER ID: CUSTOdy Seal Present Custody Seal Present Custody Seal Intact Cu	BI	V Labs Project #: C432992						or but									
AMPLED SAMPLED (PH-MM) I CNH446-LCRI-8MAY24-M WATER 2024/05/08 KR I X X X I X X X I X X X I X X X I X X X X I X	1							ount a									
D: COOLER ID: Custody Seal Present Custody Seal Present Custody Seal Intact Cooling Media Present Cooling Me	L	SAMPLE ID	MATRIX	SAMPLED	SAMPLED	SAMPLER	CONT.	ae Species Co						ADDI	TIONA	AL SAMPLE IN	FORMATION
D: COOLER ID: Cooler ID: Cooler ID: Country Seal Present Cooling Media Present Cooling Me	1	CNH446-LQL1-8MAY24-M	WATER		(minerior)	MB		-		-				(P: 07)			
D: COOLER ID: Custody Seal Present VES NO Temp: Custody Seal Intact Custody	2					KR	1	X									
D: VES NO Temp: Custody Seal Intact Custody Seal Intact	3																
ATORY CRITERIA SPECIAL INSTRUCTIONS Please inform Bureau Veritas immediately if you are not accredited for the requested test(s) or the hold time is approaching. **Please return a copy of this form with the report. ** COOLER ID: Custody Seal Present Custody Seal Intact Custody Seal Intact Custody Seal Intact Cooling Media Present Custody Seal Intact Cooling Media Present Custody Seal Intact Cooling Media Present	0																
Please inform Bureau Veritas immediately if you are not accredited for the requested test(s) or the hold time is approaching. **Please return a copy of this form with the report.** COOLER ID: Present YES NO Temp: Custody Seal Present Custody Seal Present Custody Seal Intact Cooling Media Present DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM)										-							
Please inform Bureau Veritas immediately if you are not accredited for the requested test(s) or the hold time is approaching. **Please return a copy of this form with the report.** COOLER ID: COOLER ID: Custody Seal Present Custody Seal Present Custody Seal Intact Custody Seal Intact Custody Seal Intact Custody Seal Intact Cooling Media Present Custody Seal Intact Cooling Media Present Cooling Media Present Cooling Media Present DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM)										-							
Please inform Bureau Veritas immediately if you are not accredited for the requested test(s) or the hold time is approaching. **Please return a copy of this form with the report.** COOLER ID: COOLER ID: Custody Seal Present Custody Seal Present Custody Seal Intact Custody Seal Intact Custody Seal Intact Custody Seal Intact Cooling Media Present Custody Seal Intact Cooling Media Present Cooling Media Present Cooling Media Present DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM)			1														
Please inform Bureau Veritas immediately if you are not accredited for the requested test(s) or the hold time is approaching. **Please return a copy of this form with the report.** COOLER ID: Present YES NO Temp: Custody Seal Present Custody Seal Present Custody Seal Intact Cooling Media Present DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM)																	
Please inform Bureau Veritas immediately if you are not accredited for the requested test(s) or the hold time is approaching. **Please return a copy of this form with the report.** COOLER ID: Present YES NO Temp: Custody Seal Present Custody Seal Present Custody Seal Intact Cooling Media Present DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM)																	
Please inform Bureau Veritas immediately if you are not accredited for the requested test(s) or the hold time is approaching. **Please return a copy of this form with the report.** COOLER ID: Present YES NO Temp: 2 3	TE SE																
Please inform Bureau Veritas immediately if you are not accredited for the requested test(s) or the hold time is approaching. **Please return a copy of this form with the report.** COOLER ID: Present YES NO Temp: 2 3	ATO	DV CRITTOIA															TURNAROUND TIME
COOLER ID: COOLER ID: Cooling Media Present Coo	ATU	RT CRITERIA												11			TORNAROUND TIME
COOLER ID: Present Intact (°C) Custody Seal Present Custody Seal Intact Cooling Media Present Cooling Media Present DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (SIGN & PRINT) COOLER ID: Custody Seal Present Custody Seal Intact Cooling Media Present DATE: (YYYY/MM/DD) TIME: (HH:MM)			Ples	ase inform Bure lease return a c	eau Veritas ir	nmediately orm with th	if you ne repo	ort.**	ot accredited for the	ne requ	ested test(s) or	the hold tin	ne is appro	aching.			2024/06/21
Present YES NO Temp: Custody Seal Present Custody Seal Intact Custody Seal Intact Custody Seal Intact Cooling Media Present Cooling Media Present Cooling Media Present Cooling Media Present DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM) TI); ·		COO	LER ID:						7 6	OOLER ID:						Date Required
ED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (SIGN & PRINT) DATE: (YYYY/MM/DD) TIME: (HH:MM)	intec	ent Temp:	Custo Custo	ody Seal Presen	it	the same of the same of			1 2 3		Custody Seal Pre	esent	YES NO			,	Please inform us if charges will be inc
DATE: (TTTY/MM/DU) TIME: (HH:MM) RECEIVED BT. (SIGN & PRINT)	ED B	Y: (SIGN & PRINT)				MANA) In	ECE	VED	DV. (SIGN 8, DOIN				DATE: O	YYY/MM/DD	1	TIME: (HH:M	M)
	Marie Care	The	TO BE SHOW THE PARTY OF THE PAR		CONTRACTOR OF STREET	VIIVI) A	ECEI	12							-		
2.						2			-								

Sent 7c: Stantec Consulting Ltd.
Suite 500 4730 Kingsway
Burnaby, BC, VSH 0C6
Tel: (604) 436-3024

CHAIN OF CUSTODY RECORD FOR SUBCONTRACTED WORK

Page 01 of 01

COC # C432983-VSTA-01-01

REPORT INFORMATION				1		YSIS REQUES	TED				
Company: Bureau Veritas Labo	pratories				ANAL	YSIS REQUES	TT				
Address: 4606 Canada Way, E	Surnaby, British Columbia	V5G 1K5									
Contact Name: Atikin Hehn											
Email: Atikin.Hehn@bureau	veritas.com, Customerso	utionsweets		8							
Phone:		accourage pureauve	ritas.com	ns o							
BV Labs Project #: C432983				tand							
# SAMPLE ID	MATRIX SAM	TE TIME SAM INIT	PLER CONT.	Algae Species Cour					ADDITIO	NAL SAMPLE INFO	DRMATION
2 CN9427-LLM1-8MAY24-M	WATER 2024/		32	4					(P: 07)		
			R 1	X							
ATORY CRITERIA											TURNAROUND TIM
A TONT CRITERIA		NSTRUCTIONS					A AL- halida	ima is anno	aching		
	**Please re	m Bureau Veritas immed turn a copy of this form w	ately if yo	u are no	ot accredited for the re	equested test					2024/06/2: Date Require
D:	COOLER ID					COOLER II	D:				nare veduite
ul Present YES NO Temp: al intact (°C)	Custody Sea Custody Sea Cooling Med	Present Intact	Ten (°(1 2 3	Custody Se Custody Se Cooling Me		YES NO	Temp: (°C)		Please inform us charges will be in
HED BY: (SIGN & PRINT)	DATE: (YYYY/MM/D) TIME: (HH:MM)	RECE	IVED	BY: (SIGN & PRINT)			DATE: (Y		TIME: (HH:MM)	4
ione The	2024/05/10	15:00	1. 1		Lino			202	4/05/22	3:00	4
			2.	NAME OF TAXABLE PARTY.	THE RESERVE OF THE PARTY OF THE			10000		THE RESERVE OF THE PARTY OF THE	

Sent To: Stantec Consulting Ltd.
Suite 500 4730 Kingsway
Burnaby, BC, V5H 0C6
Tel: (604) 436-3014

CHAIN OF CUSTODY RECORD FOR SUBCONTRACTED WORK

Page 01 of 01

COC# C432979-VSTA-01-01

Company: Bureau Veri									ue neou	IESTED						
Address: 4606 Canada Way, Burn	Tributanian and the same of th	olumbia vec	1VE					ANALYS	SIS REQU	ESTED						
Atikin Hehn																
Email: Atikin.Hehn@bureauveri	as com C															
Email: Atikin.Hehn@bureauveri	us.com, cust	tomersolutions	swest@bure	eauveritas.	.com	Subc			8							
BV Labs Project #: C432979						Oi pu										
# SAMPLE ID	MATRIX	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	SAMPLER INITIALS	CONT.	ae Species Count a							-	ADDITIONAL SAM	APLE INFO	RMATION
1 CNH376-NNL1-8MAY24-M	W	2024/05/08	(HHIMM)		40	Algae							-	(P: 07)		
CNH377-NNL1-8MAY24-R	W	2024/05/08		KR	1	×							-			
		75,08		KR	1	X						-	-	(P: 07)		
															1065750	
ATORY CRITERIA	SP	ECIAL INSTRU	CTIONS										-		1	URNAROUND TIME
	Pie	ease inform Bure Please return a c	eau Veritas in copy of this fo	nmediately orm with the	of your	are not accort.**	redited fo	r the req	quested t	test(s) or	the hold	I time is a	pproach	hing.	1	Rush Required 2024/06/21
	Coc	DLER ID:						71	COOLE	R ID:			MARKET STATE			Date Required
Present Temp: (°C)	Cust	ody Seal Presen ody Seal Intact ing Media Prese	it .	ES NO	Tem (°C	77 0 1000000		1	Custod	ly Seal Pr ly Seal In g Media	tact	VES	T	emp: (°C)		Please inform us if charges will be into
	DATE: (YYYY)	/MM/00)	TIME: (HH:	MM) R	ECEI	VED BY:	IGN & PI	IINT)				DAT	Eign	4/05/22 3/	(HH MM)	1

Freshwater Zooplankton Enumeration and Identification Methods Client: Quinsam Coal Corp Project: Quinsam Lakes Batch 1

Sample Inventory

Sample arrival: 17-May-2024

Number of samples: 5 Number of jars: 5 Screen size: 63 µm

Biologica project number: 24-123

Upon arrival, the samples were examined and double-checked against the chain of custody to ensure that (1) all samples were accounted for, and (2) each sample had the appropriate number of jars as indicated on the COC. Any discrepancies were reported to the client and were resolved before further sample handling. Samples were transferred from formalin into 70% ethanol and assigned a unique identification number. For processing, samples were analyzed in water and then transferred back into 10% Formalin for storage.

Sample Processing

Freshwater zooplankton samples were analyzed in two fractions as follows:

- (1) A "Coarse" fraction comprised of cladocerans, adult copepods, and copepedids, in which a minimum count of 200 organisms was obtained; and
- (2) A "Fine" or "Micro" fraction, in which only copepod nauplii and rotifers were identified and enumerated. Processing of the micro fraction was completed to either a 100-count or a maximum of three sub-samples. The Micro fraction was analyzed using a 1-mL Sedgewick-Rafter counting chamber.

The Coarse fraction was analyzed in a Bogorov tray through a stereo microscope at 10-40x magnification. All organisms were identified by taxonomic experts to the lowest taxonomic level using a compound microscope (100–400x magnification), appropriate dissection tools, and standard taxonomic references. For copepods, the stage of development was also recorded (copepodite stages I-V) as is the sex for mature individuals (copepod stage VI).

Sub-sampling for all fractions was performed using Hensen-Stempel pipettes.

Zooplankton were identified to species wherever possible, although immature copepods lack differentiating features required for identification beyond order (e.g., Calanoida, Cyclopoida, or Harpacticoida). All identifications were performed using taxonomic references and collaborations with external experts, where necessary.

Table 1. Summary of zooplankton samples processed for Quinsam Coal Corp, Quinsam Lakes Batch 1, 2024.

Client Sample ID	Date Sampled	Biologica Sample ID	Fraction	Split	Specimens Counted
LLM1-8May24-M	8-May-24	fz24-123-001	Fine	2/50	108
			Coarse	14/50	227
NNL1-8May24-M	8-May-24	fz24-123-002	Fine	2/50	111
			Coarse	8/50	225
NNL1-8May24-R	8-May-24	fz24-123-003	Fine	3/50	142
			Coarse	12/50	231
MQL1-8May24-M	8-May-24	fz24-123-004	Fine	2/50	132
			Coarse	Whole	380
LQL1-8May24-M	8-May-24	fz24-123-005	Fine	1/50	119
_			Coarse	7/50	317

QA/QC

Ten percent (10%) of samples (1 sample) was reanalyzed to assess sub-sampling accuracy and taxonomic consistency. The sample was chosen at random and processed at different times to reduce counting and identification bias. The percent agreement between QA samples is reported in Table 2.

Table 2. Summary of enumeration QA/QC results for Quinsam Coal Corp, Quinsam Lakes, 2024.

Client	Biologica	Total Original	Total QA Density	Percent
Sample ID	Sample ID	Density (#/L)	(#/L)	Agreement
NNL1-8May24-M	fz24-123-002	33.01	29.31	88.79

Percent Agreement:

100 – [(difference in density between samples/total density of original sample) x 100]

Data

Densities (#/L) were calculated using the net diameter, 5" (or 12.70 cm), and tow depth (m).

Taxonomic data were recorded in Biologica's custom database. Results were provided to the Quinsam Coal Corp project manager in Excel spreadsheets via email.

Methodological and Taxonomic References

Anderson RS. 1967. Diaptomid copepods from two mountain ponds in Alberta. Can. J. Zool., 45: 1043–1047.

Anderson RS. 1970. *Diaptomus* (*Leptodiaptomus*) *connexus* Light 1938 in Alberta and Saskatchewan. Can. J. Zool. 48: 4147.

Chapman, M.A. 1982. A study of the mouthparts of some *Diaptomus* species (Copepoda, Caianoida). J. Nat. Hist. 16: 561–576.

- Dumont HJ, van de Velde I, Dumont S. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia. 19:75–97.
- EPA Great Lakes National Program Office. 2017. Standard Operating Procedure for Zooplankton Analysis, LG403 Revision 08.01, February 2017, Updated July 2019.
- EPA Great Lakes National Program Office. 2003. Standard operating procedure for zooplankton analysis. LG403, Revision 03 February 2003.
- Haney JF, et al. "An-Image-based Key to the Zooplankton of North America" version 5.0 released 2013. University of New Hampshire Center for Freshwater Biology. http//cfb.unh.edu. Accessed December 2017.
- McCauley E. 1984. Chapter 7. The estimation of the abundance and biomass of zooplankton in samples. In: Downing, J.A. and Rigler, F.H. (eds.) A manual on methods for the assessment of secondary production in fresh waters.-2nd edition. IBP Handbook 17. Blackwell Scientific Publications. Smith, D.G. 2001. *Pennak's Freshwater Invertebrates of the United States*, 4th ed. John Wiley and Sons. 664 p.
- Rowe C, et al. 2007. Three new cryptic species of the freshwater zooplankton genus *Holopedium* (Crustacea: Branchiopoda: Ctenopoda), revealed by genetic methods. Zootaxa. 1656: 1-49.
- Thorp JH, Covich AP. 2000. *Ecology and Classification of Freshwater Invertebrates*. Academic Press, San Diego and New York. 936 p.
- Watkins J, Rudstam L, Holeck K. 2011. Length-weight regressions for zooplankton biomass calculations A review and a suggestion for standard equations. Cornell Biological Field Station, Cornell University, New York. http://ecommons.cornell.edu/bitstream/1813/24566/2/LengthWeight_Oct24.pdf Accessed December 2017.
- Wilson MS. 1951. Some significant points in the distribution of Alaskan fresh-water Copepod Crustacea. Proc. 2nd Alaskan Sci. Conf. 1951: 315–318.
- Wilson MS. 1953. New and inadequately known North American species of the copepod genus *Diaptomus*. Smithsonian Misc. Coll. 122(2): 1–30.
- Wilson MS. 1959. Calanoida, pp. 738–794. In: W.T. Edmondson (ed.). Fresh-Water Biology, 2nd ed. John Wiley & Sons, New York.

Abbreviations & Definitions

Worksheets:

1. Abbreviations & Definitions Glossary of terms and outline of report

2. Matrix-Abundance Abundance data in matrix format, including total abundance per sample 2. Matrix-Density Density (#/L) data in matrix format, including total density per sample

4. Data-Long Abundance and biomass data in long format with average taxon biomass inserted in order to calculate total biomass and abundan

5. QA-QC Quality control report of zooplankton enumeration in QA samples

Abundance Data:

Number of unique taxa (=species richness), not including higher-order taxa for which there exists a lower-order identification. Total Number of Taxa

Total Number of Organisms Total Abundance, not including incidental taxa

Presence Taxa not enumerated in sample

Count data converted to "per sample" total value #/sample

Life Stages:

Crustacean early larval stage Nauplius

Copepods:

Ш Copepodite stage 3: juvenile copepod stage occurring 2 moults after naupliar stages, generally with 3 abdominal segments IV Copepodite stage 4: juvenile copepod stage occurring 3 moults after naupliar stages, generally with 4 abdominal segments

I-IV Copepodite stage 1-4: juvenile copepod stages occurring up to 3 moults after naupliar stages I-V Copepodite stage 1-5: juvenile copepod stages occurring up to 4 moults after naupliar stages

v Copepodite stage 5: juvenile copepod stage occurring 4 moults after naupliar stages, generally with 5 abdominal segments

VIf Copepod (adult) stage 6: reproductive adult copepod stage, generally with 6 abdominal segments, female VIm

Copepod (adult) stage 6: reproductive adult copepod stage, generally with 6 abdominal segments, male

Rotifers:

Non-colonial rotifer Individual Colony Colonial rotifer

Cladocerans:

Juvenile Adult female М Adult male

Adult (sex not determined) Α

Dipterans:

Larva

Biomass Measurements:

Wet weight ww DW Dry weight

mg/sample milligrams per sample

Crustaceans: $ln(W) = ln(\alpha) + \beta ln(L)$ W Dry weight estimate (mg)

α Species-specific constant in biomass estimation formula for copepods (intercept) (sources in reference column) β Species-specfic constant in biomass estimation formula for copepods (slope) (sources in reference column)

Rotifer biomass (µg DW) = (length³ x FF) + (%BV x length³ x FF) x 10^{-6} x WW:DW Rotifers:

Rotifer biomass ($\mu g DW$) = (length³ x FF) + (%BV x length³ x FF) x 10⁻⁶ x WW:DW

Collotheca biomass (µg DW) = (width³ x FF) x 10⁻⁶ x WW : DW

Conochiloides, Conochilus, Filinia, and Trichocerca biomass (µg) = [(length x width² x FF) + (%BV x length x width² x FF)] x 10⁻⁶ x WW : DW

total length (µm) length total width (µm) width

Species-specific constant for calculation of biomass in rotifers, source of values in reference column FF %BV Species-specific volume of appendages as a percent of body biovolume, source of values in reference column

Biologica Coding

Mollusca

MOXX

Major Taxonomic Groups:		
Taxa Group	Group Code	Taxonomic Group
Annelida	ANHI	Annelida Hirudinea
Annelida	ANOL	Annelida Oligochaeta
Annelida	ANXX	Annelida
Annelida	POER	Polychaeta Errantia
Annelida	POSE	Polychaeta Sedentaria
Annelida	POXX	Polychaeta
Arthropoda	CHAR	Chelicerata Arachnida (Acari)
Arthropoda	CHPY	Chelicerata Pycnogonida
Arthropoda	CHXX	Chelicerata
Arthropoda	CRAM	Crustacea Amphipoda
Arthropoda	CRCI	Crustacea Cirripedia
Arthropoda	CRCL	Crustacea Cladocera
Arthropoda	CRCO	Crustacea Copepoda
Arthropoda	CRCU	Crustacea Cumacea
Arthropoda	CRDE	Crustacea Decapoda
Arthropoda	CRDI	Crustacea Diplostraca
Arthropoda	CREU	Crustacea Euphausiacea
Arthropoda	CRIS	Crustacea Isopoda
Arthropoda	CRLE	Crustacea Leptostraca
Arthropoda	CRMY	Crustacea Mysidacea
Arthropoda	CROS	Crustacea Ostracoda
Arthropoda	CRTA	Crustacea Tanaidacea
Arthropoda	CRXX	Crustacea
Arthropoda	INCM	Insecta Collembola
Arthropoda	INCO	Insecta Coleoptera
Arthropoda	INDI	Insecta Coleoptera
Arthropoda	INEP	Insecta Ephemeroptera
Arthropoda	INHM	Insecta Epiteriorioptera
Arthropoda	INHY	Insecta Hymenoptera
Arthropoda	INLE	Insecta Lepidoptera
Arthropoda	INMG	Insecta Megaloptera
Arthropoda	INNE	Insecta Neuroptera
Arthropoda	INOD	Insecta Odonata
Arthropoda	INPL	Insecta Plecoptera
Arthropoda	INTH	Insecta Thysanoptera
Arthropoda	INTR	Insecta Tricoptera
Arthropoda	INXX	Insecta
Arthropoda	MYCH	Chilopoda
Arthropoda	MYDI	Diplopoda
Echinodermata	ECAS	Echinodermata Asteroidea
Echinodermata	ECCR	Echinodermata Crinoidea
Echinodermata	ECEC	Echinodermata Echinoidea
Echinodermata	ECHO	Echinodermata Holothuroidea
Echinodermata	ECOP	Echinodermata Ophiuroidea
Miscellaneous	ACAN	Acanthocephala
Miscellaneous	AMPH	Amphibia
Miscellaneous	BRAC	Brachiopoda
Miscellaneous	BRYO	Bryozoa
Miscellaneous	CHAE	Chaetognatha
Miscellaneous	CILI	Ciliophora Ciliophora
Miscellaneous	CNAN	Cnidaria Anthozoa
Miscellaneous	CNHY	Cnidaria Hydrozoa
Miscellaneous	CNSC	Cnidaria Scyphozoa
Miscellaneous	CNXX	Cnidaria
Miscellaneous	CTEN	Ctenophora
Miscellaneous	ENTO	Entoprocta
Miscellaneous	EURA	Echiura
Miscellaneous	FORA	Foraminifera
Miscellaneous	HEMI	Hemichordata
Miscellaneous	KINO	Kinorhyncha
Miscellaneous	NODA	Nemata
Miscellaneous	NTEA	Nemertea
Miscellaneous	PHOR	Phoronida
Miscellaneous	PIXX	Pisces
Miscellaneous	PLTY	Platyhelminthes
Miscellaneous	PORI	Porifera
Miscellaneous	PRIA	Priapulida
Miscellaneous	ROTI	Rotifera
Miscellaneous	SIPN	Sipuncula
Miscellaneous	TARD	Tardigrada
Miscellaneous	URAP	Appendicularia
Miscellaneous	URAS	Ascidiacea
Miscellaneous	URTH	Thaliacea
Mollusca	MOAP	Mollusca Aplacophora
Mollusca	MOBI	Mollusca Bivalvia
Mollusca	MOCE	Mollusca Cephalopoda
Mollusca	MOGA	Mollusca Gastropoda
Mollusca	MOPO	Mollusca Polyplacophora
Mollusca	MOSC	Mollusca Scaphopoda

Mollusca

Table Total Tota			Gr	and Total	fz24-123-001 LLM	fz24-123-002 NNL	fz24-123-003 NNL Rep 08-May-24	fz24-123-004 MQL	fz24-123-005 LQL 08-May-24	fz24-123-002_QA NNL1 QA
Taxon			Total	Total Abundance	00-1VIdy-24	Uo-IVIdy-24		•	00-IVIAY-24	Uo-ividy-24
Bosninida longifostris	Taxon	Stage			(#/samnle)	(#/samnle)			(#/samnle)	(#/samnle)
Bosnindia Indet. A		_	•			(#/ Sample)	(#/ Sample)	(#/ Salliple)	(#/ Sample)	(#/ Sumple)
Eubosnina longisgina	-		-		00				79	69
Anna sp.			1			56	4	20	75	03
Chybonics sphericus							•		7	
Dephina sp.									•	
Holopedium gibberum A 1 407 7 244 138 11 7 119 110 14 110 14 150 14 150 14 150 14 150 14 150 14 150 14 150 14 150 14 150 1					264	769	525		36	825
Diaghanosoma sp. A		Α								
Total Cladocera										
Diaptomidae indet.	· ·			2,480	339	1,075	667	256	143	1,013
Diagromidae indet				,		,				,
Hesperodiaptomus sp.	Diaptomidae indet.	VIf		11	4	6		1		6
Hesperoliaptomus sp. Vilm	Diaptomidae indet.	VIm		0						6
Skistodiaptomus oregonensis Vif	Hesperodiaptomus sp.	VIf	1	7			4	3		
Skistodijatomus oregonensis Vim	Hesperodiaptomus sp.	VIm		8			4	4		
Calanoida indet. I-V 448 by 191 129 by 163 by 193 by 1	Skistodiaptomus oregonensis	VIf	1	8			8			
Total Calanoida indet:	Skistodiaptomus oregonensis	VIm		8			8			
Diacyclops thomasi	Calanoida indet.	I-V		448	129	163	108	34	14	100
Diacyclops thomasi	Total Calanoida indet.			491	132	169	133	42	14	113
Diacyclops thomasi										
Cyclopoida indet. I-V 2,736 311 156 158 25 2,086 150 Total Cyclopoida I-V 2,853 339 163 163 163 82 2,107 163 1	Diacyclops thomasi	VIf	1	66	18	6	4	38		13
Calanoida indet. Nauplius 1,433 225 475 333 250 150 375	Diacyclops thomasi	VIm		51	11			19	21	
Calanoida indet. Nauplius 1,433 225 475 333 250 150 375 Cyclopoida indet. Nauplius 5,658 725 600 483 2,650 1,200 475 Total Copepod Nauplii 7,092 950 1,075 817 2,900 1,350 850 Total Crustacean Zooplankton 12,915 1,761 2,481 1,779 3,280 3,614 2,138	Cyclopoida indet.	I-V		2,736	311	156	158	25		150
Cyclopoida indet. Nauplius 5,658 725 600 483 2,650 1,200 475 1,761 1,075	Total Cyclopoida			2,853	339	163	163	82	2,107	163
Cyclopoida indet. Nauplius 5,658 725 600 483 2,650 1,200 475 1,761 1,075										
Total Crustacean Zooplankton										
Total Crustacean Zooplankton		Nauplius		•						
Asplanchna sp. Individual 1 25 25 25	Total Copepod Nauplii			7,092	950	1,075	817	2,900	1,350	850
Asplanchna sp. Individual 1 25 25 25										
Kellicottia longispina Individual 1 358 75 75 33 75 100 200 Keratella sp. 1 Individual 1 1,067 250 75 17 75 650 75 Keratella sp. 2 Individual 1 200 100 50 50 50 Conochillus sp. Colony 467 1,425 1,450 100 1,000 1,175 Gastropus sp. Individual 1 3,975 25 25 25 25 25 25 25 25 25 25 300 25 25 25 25 25 25 350 300 25 25 25 25 350 100 300 25 350 100 300 25 350 100 300 25 350 100 300 25 350 100 300 25 350 100 300 25 1,700 1,700 1,700	Total Crustacean Zooplankton			12,915	1,761	2,481	1,779	3,280	3,614	2,138
Kellicottia longispina Individual 1 358 75 75 33 75 100 200 Keratella sp. 1 Individual 1 1,067 250 75 17 75 650 75 Keratella sp. 2 Individual 1 200 100 50 50 50 Conochillus sp. Colony 467 1,425 1,450 100 1,000 1,175 Gastropus sp. Individual 1 3,975 25 25 25 25 25 25 25 25 25 25 300 25 25 25 25 25 25 350 300 25 25 25 25 350 100 300 25 350 100 300 25 350 100 300 25 350 100 300 25 350 100 300 25 350 100 300 25 1,700 1,700 1,700										
Keratella sp. 1 Individual 1 1,067 250 75 17 75 650 75 Keratella sp. 2 Individual 1 200 100 50 50 50 Conochilus sp. Colony 467 17 450 450 Conochilus sp. Individual 1 3,975 1,425 1,450 100 1,000 1,175 Gastropus sp. Individual 1 367 17 50 300 25 Gastropus stylifer Individual 1 367 17 50 300 25 Polyarthra sp. Individual 1 1,317 825 100 17 25 350 100 Synchaeta sp. Individual 1 75 50 50 25 25 25 25 1,700 1,700 1,700 1,700 1,700 1,575 1,700 1,575 1,575 1,575 1,575 1,500 1,575 1,575 <t< td=""><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	· ·									
Keratella sp. 2 Individual 1 200 100 50 50 Conochilus sp. Colony 467 17 450 Conochilus sp. Individual 1 3,975 1,425 1,450 100 1,000 1,175 Gastropus sp. Individual 1 367 17 50 300 25 Gastropus stylifer Individual 1 1,317 825 100 17 25 350 100 Synchaeta sp. Individual 1 75 50 25 25 25 25 25 350 100 17 25 350 100										
Conochillus sp. Colony 467 17 450 Conochillus sp. Individual 1 3,975 1,425 1,450 100 1,000 1,175 Gastropus sp. Individual 25 25 25 25 25 25 300 25 Gastropus stylifer Individual 1 367 17 50 300 25 Polyarthra sp. Individual 1 1,317 825 100 17 25 350 100 Synchaeta sp. Individual 1 75 50 25 25 25 25 25 25 25 25 350 100	•					75	17			75
Conochillus sp. Individual 1 3,975 1,425 1,450 100 1,000 1,175 Gastropus sp. Individual 25 25 17 50 300 25 Gastropus stylifer Individual 1 367 17 50 300 25 Polyarthra sp. Individual 1 75 50 25 350 100 Synchaeta sp. Individual 1 75 50 25 25 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,575 1,700 1,575	•		1		100		4-7	50		
Gastropus sp. Individual 25 25 25 Gastropus stylifer Individual 1 367 17 50 300 25 Polyarthra sp. Individual 1 1,317 825 100 17 25 350 100 Synchaeta sp. Individual 1 75 50 50 Trichocerca sp. Individual 1 50 50 Ploima indet. Individual 2,075 350 25 Total Rotifera 22,915 3,511 4,181 3,329 3,680 8,214 3,713	•		4			4.425		400		4.475
Gastropus stylifer Individual 1 367 17 50 300 25 Polyarthra sp. Individual 1 1,317 825 100 17 25 350 100 Synchaeta sp. Individual 1 75 50 25 25 17 1700	•		1		25	1,425	1,450	100	1,000	1,1/5
Polyarthra sp. Individual 1 1,317 825 100 17 25 350 100 Synchaeta sp. Individual 1 75 50 25 25 17richocerca sp. 1 Individual 1 50 50 50 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,575 400 4,600 1,575 1,575 Total Zooplankton 22,915 3,511 4,181 3,329 3,680 8,214 3,713			1		25		17	F0	200	25
Synchaeta sp. Individual 1 75 50 25 Trichocerca sp. Individual 1 50 50 Ploima indet. Individual 2,075 350 25 1,700 Total Rotifera 10,000 1,750 1,700 1,550 400 4,600 1,575 Total Zooplankton 22,915 3,511 4,181 3,329 3,680 8,214 3,713					925	100				
Trichocerca sp. Individual 1 50 50 Ploima indet. Individual 2,075 350 25 1,700 Total Rotifera 10,000 1,750 1,700 1,550 400 4,600 1,575 Total Zooplankton 22,915 3,511 4,181 3,329 3,680 8,214 3,713				•		100	1/		350	100
Ploima indet. Individual 2,075 350 25 1,700 Total Rotifera 10,000 1,750 1,700 1,550 400 4,600 1,575 Total Zooplankton 22,915 3,511 4,181 3,329 3,680 8,214 3,713	·							25		
Total Rotifera 10,000 1,750 1,700 1,550 400 4,600 1,575 Total Zooplankton 22,915 3,511 4,181 3,329 3,680 8,214 3,713	· ·		1			25			1 700	
Total Zooplankton 22,915 3,511 4,181 3,329 3,680 8,214 3,713		mundudl					1 550	400		1 575
	iotai kotiiera			10,000	1,/50	1,700	1,550	400	4,600	1,3/3
	Total Zoonlankton			22,915	3,511	4.121	3,329	3.680	8.214	3.713
	•		19	,,,,						

Zooplankton total density (#/L) data matrix for Quinsam Coal Corp, Quinsam Lakes Batch 1, 2024.

Biologica Sa Client Samp Date Samp	ole ID				Gran	d Total	fz24-123-001 LLM 08-May-24	fz24-123-002 NNL 08-May-24	fz24-123-003 NNL Rep 08-May-24	fz24-123-004 MQL 08-May-24	fz24-123-005 LQL 08-May-24	fz24-123-002_QA NNL1 QA 08-May-24
					Total	Total Density			Total	al Density		
Grouncode	Major Group	Family	Taxon	Stage	Unique Taxa	(#/L)	(#/L)	(#/L)	(#/L)	(#/L)	(#/L)	(#/L)
CRCL	Crustacea Cladocera	Bosminidae	Bosmina longirostris	A	1	0.54	0.54	("/ =/	("/ -/	("/ =/	("/ -/	("/-)
CRCL	Crustacea Cladocera	Bosminidae	Bosminidae indet.	A	-	0.62	0.5 .				0.62	0.54
CRCL	Crustacea Cladocera	Bosminidae	Eubosmina longispina	Α	1	0.63		0.44	0.03	0.16		
CRCL	Crustacea Cladocera	Chydoridae	Alona sp.	Α	1	0.07				0.02	0.06	
CRCL	Crustacea Cladocera	Chydoridae	Chydorus sphaericus	Α	1	0.02				0.02		
CRCL	Crustacea Cladocera	Daphniidae	Daphnia sp.	Α	1	14.33	2.09	6.07	4.14	1.74	0.28	6.51
CRCL	Crustacea Cladocera	Holopediidae	Holopedium gibberum	Α	1	3.21	0.06	1.92	1.09	0.09	0.06	0.94
CRCL	Crustacea Cladocera	Sididae	Diaphanosoma sp.	Α	1	0.16		0.05			0.11	
			Total Cladocera			19.58	2.68	8.49	5.26	2.02	1.13	7.99
CRCO	Crustacea Copepoda Calanoida	Diaptomidae	Diaptomidae indet.	VIf		0.09	0.03	0.05		0.01		0.05
CRCO	Crustacea Copepoda Calanoida	Diaptomidae	Diaptomidae indet.	VIm		0.00						0.05
CRCO	Crustacea Copepoda Calanoida	Diaptomidae	Hesperodiaptomus sp.	VIf	1	0.06			0.03	0.02		
CRCO	Crustacea Copepoda Calanoida	Diaptomidae	Hesperodiaptomus sp.	VIm		0.06			0.03	0.03		
CRCO	Crustacea Copepoda Calanoida	Diaptomidae	Skistodiaptomus oregonensis	VIf	1	0.07			0.07			
CRCO	Crustacea Copepoda Calanoida	Diaptomidae	Skistodiaptomus oregonensis	VIm		0.07	4.04	4.20	0.07	0.27	0.44	0.70
CRCO	Crustacea Copepoda Calanoida		Calanoida indet.	I-V		3.53	1.01	1.28	0.86	0.27	0.11	0.79
			Total Calanoida indet.			3.87	1.04	1.33	1.05	0.33	0.11	0.89
CRCO	Crustacea Copepoda Cyclopoida	Cyclonidae	Diacyclops thomasi	VIf	1	0.52	0.14	0.05	0.03	0.30		0.10
CRCO	Crustacea Copepoda Cyclopoida		Diacyclops thomasi	VIm	=	0.40	0.08			0.15	0.17	
CRCO	Crustacea Copepoda Cyclopoida	-,	Cyclopoida indet.	I-V		21.60	2.45	1.23	1.25	0.20	16.46	1.18
			Total Cyclopoida			22.53	2.68	1.28	1.28	0.65	16.63	1.28
			, .									
CRCO	Crustacea Copepoda Calanoida		Calanoida indet.	Naupliu	S	11.31	1.78	3.75	2.63	1.97	1.18	2.96
CRCO	Crustacea Copepoda Cyclopoida		Cyclopoida indet.	Naupliu	S	44.67	5.72	4.74	3.82	20.92	9.47	3.75
			Total Copepod Nauplii			55.98	7.50	8.49	6.45	22.89	10.66	6.71
			Total Crustacean Zooplankton			101.96	13.90	19.59	14.04	25.89	28.53	16.87
ROTI	Rotifera	Asnlanchnidae	Asplanchna sp.	Individ	1	0.20	0.20					
ROTI	Rotifera	Brachionidae	Kellicottia longispina	Individ	1	2.83	0.59	0.59	0.26	0.59	0.79	1.58
ROTI	Rotifera	Brachionidae	Keratella sp. 1	Individ	1	8.42	1.97	0.59	0.13	0.59	5.13	0.59
ROTI	Rotifera	Brachionidae	Keratella sp. 2	Individ	1	1.58	0.79			0.39	0.39	
ROTI	Rotifera	Conochilidae	Conochilus sp.	Colony		3.68			0.13		3.55	
ROTI	Rotifera	Conochilidae	Conochilus sp.	Individ	1	31.38		11.25	11.45	0.79	7.89	9.28
ROTI	Rotifera	Gastropodidae	•	Individu		0.20	0.20					
ROTI	Rotifera	Gastropodidae	Gastropus stylifer	Individ	1	2.89			0.13	0.39	2.37	0.20
ROTI	Rotifera	Synchaetidae	Polyarthra sp.	Individ	1	10.39	6.51	0.79	0.13	0.20	2.76	0.79
ROTI	Rotifera	Synchaetidae	Synchaeta sp.	Individ	1	0.59	0.39			0.20		
ROTI	Rotifera	Trichocercidae	Trichocerca sp.	Individ	1	0.39	0.39					
ROTI	Rotifera		Ploima indet.	Individu	al	16.38	2.76	0.20			13.42	
			Total Rotifera			78.94	13.81	13.42	12.24	3.16	36.31	12.43
			T. 1. 1 T 1 1			400.00	27.74	22.24	26.20	20.05	54.04	20.24
			Total Unique Taxa		10	180.90	27.71 13	33.01 10	26.28	29.05 14	64.84 13	29.31 10
			Total Unique Taxa		19		13	10	11	14	13	10

Zooplankton raw count data for abundance and biomass calculations for Quinsam Coal Corp, Quinsam Lakes Batch 1, 2024

Client	Project	Year	Biologica Sample ID	Client Sample ID	Site Name	FES Sample Number	Date Sampled	Batch	Net Radius (cm)	Tow Length (m)	Split	Fraction	Groupcode
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	14/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	14/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	14/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	14/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	14/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	CRCO
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	14/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	14/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	14/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	LLM1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	2/50	Fine	CRCO
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	2/50	Fine	CRCO
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1	n/a		1	6.35	10	2/50	Fine	ROTI
							8-May-24	-					
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1 NNL1	n/a	8-May-24	1	6.35	10 10	2/50	Fine Fine	ROTI
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	NNL1 NNL1	n/a	8-May-24		6.35	10	2/50		ROTI
Quinsam Coal Corp.			fz24-123-002	NNL1-8May24-M		n/a	8-May-24	1	6.35		2/50	Fine	ROTI
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCL
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	2/50	Fine	CRCO
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	8/50	Coarse	CRCO
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	2/50	Fine	CRCO
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	NNL1_QA	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCL

Zooplankton raw count data for abundance and biomass calculations for Quinsam Coal Corp, Quins

									_								
Client	Project	Year	Biologica Sample ID	Client Sample ID	Major Group	Phylum	Order	Family	Taxon	Stage	Raw Count	Split Multiplier	Total Abundance	Tow Volume (L)	Density (#/L)	Unique Tax	Comments
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	Crustacea Cladocera		Diplostraca	Bosminidae		A	19	3.57	68	126.68	0.54	1	
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Daphniidae	Daphnia sp.	Α	74	3.57	264	126.68	2.09	1	Possibly D. rosea
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	Crustacea Cladocera		Diplostraca	Holopediidae	Holopedium gibberum	Α.	2	3.57	7	126.68	0.06	1	
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	Crustacea Copepoda Calanoida		Calanoida	Diaptomidae	Diaptomidae indet.	VIf	1	3.57	4	126.68	0.03	1	
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida			I-V	36	3.57	129	126.68	1.01		
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida		Calanoida indet.	Nauplius	9	25.00	225	126.68	1.78		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida	Cyclopidae	Diacyclops thomasi	VIf	5	3.57	18	126.68	0.14	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida	Cyclopidae	Diacyclops thomasi	VIm	3	3.57	11	126.68	0.08		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		Cyclopoida indet.	I-V	87	3.57	311	126.68	2.45		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		Cyclopoida indet.	Nauplius	29	25.00	725	126.68	5.72		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima	Asplanchnidae	Asplanchna sp.	Individual	1	25.00	25	126.68	0.20	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Kellicottia longispina	Individual	3	25.00	75	126.68	0.59	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 1	Individual	10	25.00	250	126.68	1.97	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 2	Individual	4	25.00	100	126.68	0.79	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima	Gastropodidae	Gastropus sp.	Individual	1	25.00	25	126.68	0.20	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima	Synchaetidae	Polyarthra sp.	Individual	33	25.00	825	126.68	6.51	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima	Synchaetidae	Synchaeta sp.	Individual	2	25.00	50	126.68	0.39	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima	Trichocercidae	Trichocerca sp.	Individual	2	25.00	50	126.68	0.39	1	
Quinsam Coal Corp.		2024	fz24-123-001	LLM1-8May24-M	Rotifera	Rotifera	Ploima		Ploima indet.	Individual	14	25.00	350	126.68	2.76		Possibly Synchaeta or Gastropus
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002	NNL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Bosminidae	Eubosmina longispina	A	9	6.25	56	126.68	0.44	1	,
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Daphniidae	Daphnia sp.	A	123	6.25	769	126.68	6.07	1	Possibly D. rosea
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Crustacea Cladocera		Diplostraca	Holopediidae	Holopedium gibberum	A	39	6.25	244	126.68	1.92	1	1 ossibly b. rosed
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Crustacea Cladocera		Diplostraca	Sididae		A	1	6.25	6	126.68	0.05	1	
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida	Diaptomidae	Diaptomidae indet.	VIf	1	6.25	6	126.68	0.05	1	
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida	Diaptoilidae		I-V	26	6.25	163	126.68	1.28	-	
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida		Calanoida indet.	Nauplius	19	25.00	475	126.68	3.75		
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Crustacea Copepoda Cyclopoida		Cyclopoida	Cyclopidae	Diacyclops thomasi	VIf	1	6.25	6	126.68	0.05	1	
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Crustacea Copepoda Cyclopoida Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida	Сусторниае		I-V	25	6.25	156	126.68	1.23	1	
Quinsam Coal Corp.	Quinsam Lakes		fz24-123-002	NNL1-8May24-M	Crustacea Copepoda Cyclopoida Crustacea Copepoda Cyclopoida		Cyclopoida		Cyclopoida indet.		24	25.00	600	126.68	4.74		
						Arthropoda		Constitutes				25.00					
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Rotifera	Rotifera	Flosculariaceae	Conochilidae	Conochilus sp.		57	25.00	1,425	126.68	11.25	1	
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Kellicottia longispina	marriada	3		75	126.68	0.59	1	
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 1	Individual	3	25.00	75	126.68	0.59	1	
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Rotifera	Rotifera	Ploima	Synchaetidae	Polyarthra sp.	Individual	4	25.00	100	126.68	0.79	1	
Quinsam Coal Corp.		2024	fz24-123-002	NNL1-8May24-M	Rotifera	Rotifera	Ploima		Ploima indet.	Individual	1	25.00	25	126.68	0.20		Possibly Gastropus, Ascomorpha, or Asplan
Quinsam Coal Corp.		2024	fz24-123-002_QA		Crustacea Cladocera	Arthropoda	Diplostraca	Bosminidae	Bosminidae indet.	A	11	6.25	69	126.68	0.54		Possibly E. longispina and B. longirostris
Quinsam Coal Corp.		2024	fz24-123-002_QA		Crustacea Cladocera	Arthropoda	Diplostraca	Daphniidae	Daphnia sp.	A	132	6.25	825	126.68	6.51	1	Possibly D. rosea
Quinsam Coal Corp.		2024	fz24-123-002_QA		Crustacea Cladocera	Arthropoda	Diplostraca	Holopediidae	Holopedium gibberum	A	19	6.25	119	126.68	0.94	1	
Quinsam Coal Corp.		2024	fz24-123-002_QA		Crustacea Copepoda Calanoida	Arthropoda	Calanoida	Diaptomidae	Diaptomidae indet.	VIf	1	6.25	6	126.68	0.05	1	
Quinsam Coal Corp.		2024	fz24-123-002_QA		Crustacea Copepoda Calanoida	Arthropoda	Calanoida	Diaptomidae	Diaptomidae indet.	VIm	1	6.25	6	126.68	0.05		Damaged, possibly Skistodiaptomus oregor
Quinsam Coal Corp.		2024	fz24-123-002_QA		Crustacea Copepoda Calanoida	Arthropoda	Calanoida			I-V	16	6.25	100	126.68	0.79		
Quinsam Coal Corp.		2024	fz24-123-002_QA		Crustacea Copepoda Calanoida	Arthropoda	Calanoida		Calanoida indet.	Nauplius	15	25.00	375	126.68	2.96		
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida	Cyclopidae	Diacyclops thomasi	VIf	2	6.25	13	126.68	0.10	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		Cyclopoida indet.	I-V	24	6.25	150	126.68	1.18		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		Cyclopoida indet.	Nauplius	19	25.00	475	126.68	3.75		
Quinsam Coal Corp.		2024	fz24-123-002_QA	NNL1-8May24-M_QA	Rotifera	Rotifera	Flosculariaceae	Conochilidae	Conochilus sp.	Individual	47	25.00	1,175	126.68	9.28	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	Rotifera	Rotifera	Ploima	Brachionidae	Kellicottia longispina	Individual	8	25.00	200	126.68	1.58	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 1	Individual	3	25.00	75	126.68	0.59	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	Rotifera	Rotifera	Ploima	Gastropodidae	Gastropus stylifer	Individual	1	25.00	25	126.68	0.20	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-002_QA	NNL1-8May24-M_QA	Rotifera	Rotifera	Ploima	Synchaetidae	Polyarthra sp.	Individual	4	25.00	100	126.68	0.79	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	Crustacea Cladocera	Arthropoda	Diplostraca	Bosminidae	Eubosmina longispina	Α	1	4.17	4	126.68	0.03	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	Crustacea Cladocera	Arthropoda	Diplostraca	Daphniidae	Daphnia sp.	Α	126	4.17	525	126.68	4.14	1	Possibly D. rosea
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	Crustacea Cladocera	Arthropoda		Holopediidae	Holopedium gibberum	Α	33	4.17	138	126.68	1.09	1	-
				,													

Zooplankton raw count data for abundance and biomass calculations for Quinsam Coal Corp, Quinsam Lakes Batch 1, 2024

Client	Project	Year	Biologica Sample ID	Client Sample ID	Site Name	FES Sample Number	Date Sampled	Batch	Net Radius (cm)	Tow Length (m)	Split	Fraction	Groupcode
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	3/50	Fine	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	12/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	3/50	Fine	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	3/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	3/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	3/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	3/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	3/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-003	NNL1-8May24-R	NNL1	n/a	8-May-24	1	6.35	10	3/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a		1	6.35	10	Whole	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24 8-May-24	1	6.35	10	Whole	Coarse	CRCL
								1		10			
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	-	6.35		Whole	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	2/50	Fine	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	Whole	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	2/50	Fine	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MQL1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	MOL1	n/a	8-May-24	1	6.35	10	2/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	7/50	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	7/50	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	7/50	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	7/50	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	7/50	Coarse	CRCL
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	7/50	Coarse	CRCO
		2024				n/a		1		10			CRCO
Quinsam Coal Corp.	Quinsam Lakes Quinsam Lakes	2024	fz24-123-005 fz24-123-005	LQL1-8May24-M	LQL1 LQL1		8-May-24	1	6.35 6.35	10	1/50	Fine Coarse	CRCO
Quinsam Coal Corp.				LQL1-8May24-M		n/a	8-May-24	-			7/50		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	7/50	Coarse	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	CRCO
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	ROTI
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	LQL1	n/a	8-May-24	1	6.35	10	1/50	Fine	ROTI

Zooplankton raw count data for abundance and biomass calculations for Quinsam Coal Corp, Quins

Client	Project	Year	Biologica Sample ID	Client Sample ID	Major Group	Phylum	Order	Family	Taxon	Stage	Raw Count	Split Multiplier	Total Abundance	Tow Volume (L)	Density (#/L)	Haiawa Tar	x Comments
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Crustacea Copepoda Calanoida		Calanoida	Diaptomidae	Hesperodiaptomus sp.	VIf	1	4.17	10tal Abundance	126.68	0.03	onique raz	x comments
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Crustacea Copepoda Calanoida	Arthropoda	Calanoida	Diaptomidae	Hesperodiaptomus sp.	VIII	1	4.17	4	126.68	0.03	1	Possibly H. hirsutus
Quinsam Coal Corp.		2024	fz24-123-003							VIII	2	4.17	8	126.68	0.03	1	Possibly H. Hirsutus
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R NNL1-8May24-R	Crustacea Copepoda Calanoida Crustacea Copepoda Calanoida		Calanoida Calanoida	Diaptomidae Diaptomidae	Skistodiaptomus oregonensis Skistodiaptomus oregonensis	VIII	2	4.17	8	126.68	0.07	1	
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Crustacea Copepoda Calanoida		Calanoida	Diaptoilidae		I-V	26	4.17	108	126.68	0.86		
			fz24-123-003								20	16.67	333	126.68			
Quinsam Coal Corp.		2024		NNL1-8May24-R	Crustacea Copepoda Calanoida		Calanoida		Calanoida indet.		1	4.17	4		2.63		
Quinsam Coal Corp.		2024	fz24-123-003 fz24-123-003	NNL1-8May24-R	Crustacea Copepoda Cyclopoida		Cyclopoida	Cyclopidae	Diacyclops thomasi	VIf I-V	38	4.17	158	126.68 126.68	0.03 1.25	1	
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		.,,		38 29	16.67	483	126.68	3.82		
Quinsam Coal Corp.				NNL1-8May24-R	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		Cyclopoida indet.								
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Rotifera	Rotifera	Flosculariaceae	Conochilidae	Conochilus sp.		1	16.67	17	126.68	0.13	1	Colony of 5 individuals
Quinsam Coal Corp.	Quinsam Lakes		fz24-123-003	NNL1-8May24-R	Rotifera	Rotifera	Flosculariaceae	Conochilidae	Conochilus sp.		87	16.67	1,450	126.68	11.45		
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Rotifera	Rotifera	Ploima	Brachionidae	Kellicottia longispina		2	16.67	33	126.68	0.26	1	
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 1	Individual	1	16.67	17	126.68	0.13	1	
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Rotifera	Rotifera	Ploima	Gastropodidae	Gastropus stylifer	Individual	1	16.67	17	126.68	0.13	1	
Quinsam Coal Corp.		2024	fz24-123-003	NNL1-8May24-R	Rotifera	Rotifera	Ploima	Synchaetidae	Polyarthra sp.	Individual	1	16.67	17	126.68	0.13	1	
Quinsam Coal Corp.		2024	fz24-123-004	MQL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Bosminidae	Eubosmina longispina	A	20	1.00	20	126.68	0.16	1	
Quinsam Coal Corp.	Quinsam Lakes		fz24-123-004	MQL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Chydoridae	Alona sp.	A	2	1.00	2	126.68	0.02	1	
Quinsam Coal Corp.		2024	fz24-123-004	MQL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Chydoridae	a, a.a. apaa.	A	2	1.00	2	126.68	0.02	1	
Quinsam Coal Corp.		2024	fz24-123-004	MQL1-8May24-M	Crustacea Cladocera		Diplostraca	Daphniidae	Daphnia sp.	A	221	1.00	221	126.68		1	Possibly D. rosea
Quinsam Coal Corp.	Quinsam Lakes		fz24-123-004	MQL1-8May24-M	Crustacea Cladocera		Diplostraca	Holopediidae	Holopedium gibberum	A	11	1.00	11	126.68	0.09	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida	Diaptomidae	Diaptomidae indet.	VIf	1	1.00	1	126.68	0.01		
Quinsam Coal Corp.		2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Calanoida		Calanoida	Diaptomidae	Hesperodiaptomus sp.	VIf	3	1.00	3	126.68	0.02	1	
Quinsam Coal Corp.		2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Calanoida		Calanoida	Diaptomidae	Hesperodiaptomus sp.	VIm	4	1.00	4	126.68	0.03		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Calanoida		Calanoida		Calanoida indet.	I-V	34	1.00	34	126.68	0.27		Possibly 2 immature Hesperodiaptomus
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida		Calanoida indet.	Nauplius	10	25.00	250	126.68	1.97		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida	Cyclopidae	Diacyclops thomasi	VIf	38	1.00	38	126.68	0.30	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida	Cyclopidae	Diacyclops thomasi	VIm	19	1.00	19	126.68	0.15		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		Cyclopoida indet.	I-V	25	1.00	25	126.68	0.20		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		Cyclopoida indet.	Nauplius	106	25.00	2,650	126.68	20.92		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Rotifera	Rotifera	Flosculariaceae	Conochilidae	Conochilus sp.	Individual	4	25.00	100	126.68	0.79	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Kellicottia longispina	Individual	3	25.00	75	126.68	0.59	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 1	Individual	3	25.00	75	126.68	0.59	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 2	Individual	2	25.00	50	126.68	0.39	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Rotifera	Rotifera	Ploima	Gastropodidae	Gastropus stylifer	Individual	2	25.00	50	126.68	0.39	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Rotifera	Rotifera	Ploima	Synchaetidae	Polyarthra sp.	Individual	1	25.00	25	126.68	0.20	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-004	MQL1-8May24-M	Rotifera	Rotifera	Ploima	Synchaetidae	Synchaeta sp.	Individual	1	25.00	25	126.68	0.20	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Bosminidae	Bosminidae indet.	A	11	7.14	79	126.68	0.62	1	Degraded
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Chydoridae	Alona sp.	A	1	7.14	7	126.68	0.06	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Daphniidae	Daphnia sp.	A	5	7.14	36	126.68	0.28	1	Possibly D. rosea
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Holopediidae	Holopedium gibberum	A	1	7.14	7	126.68	0.06	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Cladocera	Arthropoda	Diplostraca	Sididae	Diaphanosoma sp.	A	2	7.14	14	126.68	0.11	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida		Calanoida indet.	I-V	2	7.14	14	126.68	0.11	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Copepoda Calanoida	Arthropoda	Calanoida		Calanoida indet.	Nauplius	3	50.00	150	126.68	1.18		
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Copepoda Cyclopoida		Cyclopoida	Cyclopidae	Diacyclops thomasi	VIm	3	7.14	21	126.68	0.17	1	
Quinsam Coal Corp.	Quinsam Lakes	2024	fz24-123-005	LQL1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida			I-V	292	7.14	2,086	126.68	16.46		
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Crustacea Copepoda Cyclopoida	Arthropoda	Cyclopoida		Cyclopoida indet.	Nauplius	24	50.00	1,200	126.68	9.47		
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Rotifera	Rotifera	Flosculariaceae	Conochilidae	Conochilus sp.	Colony	9	50.00	450	126.68	3.55	1	Colony of 4 individuals
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Rotifera	Rotifera	Flosculariaceae	Conochilidae	Conochilus sp.		20	50.00	1,000	126.68	7.89		
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Kellicottia longispina		2	50.00	100	126.68	0.79	1	
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 1		13	50.00	650	126.68	5.13	1	
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Rotifera	Rotifera	Ploima	Brachionidae	Keratella sp. 2	Individual	1	50.00	50	126.68	0.39	1	
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Rotifera	Rotifera	Ploima	Gastropodidae	Gastropus stylifer	Individual	6	50.00	300	126.68	2.37	1	
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Rotifera	Rotifera	Ploima	Synchaetidae	Polyarthra sp.	Individual	7	50.00	350	126.68	2.76	1	
Quinsam Coal Corp.		2024	fz24-123-005	LQL1-8May24-M	Rotifera	Rotifera	Ploima	Synchaetiude	Ploima indet.		34	50.00	1.700	126.68	13.42	-	Possibly Synchaeta
Quinsain coal Corp.	Quirisain Lakes	2024	1224-123-005	LULI-OIVIAY24-IVI	Rouleia	rometa	PIUIIIId		riuinia muet.	murviduai	34	30.00	1,700	120.00	13.42		russiuly sylichaeta

Quality control report of zooplankton density in QA samples for Quinsam Coal Corp, Quinsam Lakes Batch 1, 2024

Biologica QA Sample ID	Client QA Sample ID		Density (#/L) (QA Replicate)	Percent Agreement
fz24-123-002	NNL1-8May24-M	33.01	29.31	88.79

Percent Agreement: {100 - [(difference in density between samples) / total density of original sample) x 100]} %